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a b s t r a c t

Two theoretical frameworks are calibrated to capture the inverse Hall–Petch phenomenon, as well as
the stress–strain response of nanocrystalline Cu during plastic flow. The first framework employed is
gradient plasticity enhanced with an interface energy term, the use of which is dictated by the fact that
at the nanoscale interfaces play a dominant role in the mechanical behavior of nanocrystalline materials.
The second formulation involves a simplified gradient plasticity model without an interface energy term
coupled with wavelet analysis.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Hall [1] and Petch [2] observed in the early 1950s that the yield
stress (�y) required for continuous plastic deformation increased
with decreasing grain size (d) leading to the well-known Hall–Petch
relation (�y ∼ 1/

√
d). Various dislocation models were used to

predict that the hardness of nanomaterials would be higher due
to the fact that grain boundaries are obstacles to intragranular
dislocation motion (since at the nanoscale ∼1/3 of the total vol-
ume fraction is attributed to grain boundary area, a high strength
was expected). Experiments, however, involving very small grain
sizes (∼10 nm) established the inverse or “anomalous”, Hall–Petch
behavior [3–5]. This phenomenon is of great interest, especially
in the micro-electronics industry, since in order to achieve further
miniaturization of devices, the deformation at the nanoscale must
be understood.

2. Outline of the two gradient plasticity models

2.1. Gradient plasticity model with interface energy term

In order to explicitly account for interfaces, Aifantis and Willis
[6,7] added an interface energy term ϕ in gradient plasticity [8,9],
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as

� (εij, εp
ij
) =

∫
˝

[Lijkl(εij − εp
ij
)(εkl − εp

kl
) + V(εp

ij
, εp

ij,k
)] d˝

+
∫

�

ϕ(εp
ij
) d�, (1)

where Lijkl are the components of the elastic stiffness tensor, ε is
the total strain, εp is the plastic strain, and V is the plastic potential
of the grains. By performing the principle of virtual work (�� = 0),
for prescribed displacements, and defining the conjugate variables
�ij = ∂U/∂εij, sij = ∂U/∂εp

ij
and �ijk = ∂U/∂εp

ij,k
= ∂V /∂εp

ij,k
the follow-

ing equilibrium, boundary, and interface conditions are obtained
[7]:

�ij,j = 0 and sij − �ijk,k = 0, in ˝; (2a)

�ijknk = 0 and ui = uo
i , on the outer boundary ∂˝; (2b)

[
�ijnj

]
= 0 and

[
�ijknk

]
= ∂ϕ/∂εp

ij
, across the grain boundary �.

(2c)

The brackets [..] denote the jump of the enclosed quantity across
the interface. It should be noted that the second expression in Eq.
(2c) suggests that the gradient of the plastic strain is discontinuous
across interfaces and, hence, allows interfaces to follow their own
yield behavior.

Various material types can be modeled by the above formula-
tion, by calibrating appropriately the interface (ϕ) and plastic (V)
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potentials which can be identified as [10]:

ϕ(εp) ≡ 	εp, (3)

V(εp, εp
,x) = �0|εp| + 1

2
ˇ
2(εp

,x)
2
, (4)

where 	 is an interface parameter indicating in a way the strength
of the interface, �0 is the grain interior yield stress, ˇ is the harden-
ing modulus, and 
 is the internal length, a characteristic material
parameter required for dimensional consistency coming into play
in all gradient theories. It should be noted that the expressions for
(ϕ) and (V) defined above allow for perfect plasticity to take place
in the grain boundary and boundary layer, since these expressions
allow for perfect plasticity to be attained, once yielding occurs.

Deformation at the nanoscale is governed through grain bound-
ary rotation and sliding, while deformation in the grain interior is
very difficult to initiate (the dislocation core may be comparable
to the grain size) and, hence, dislocation formation and motion in
grains may be impossible. Therefore, grains are assumed to expe-
rience no plastic strain and upon deformation the material is split
into three regions: a plastically deforming grain boundary (located
at x = 0), a plastically deforming boundary layer of length 2L*, since
the grain material adjacent to the grain boundary also yields, and
an elastic grain interior.

Therefore, to obtain the plastic response in the material we must
consider the plastic zone that lies between −L* ≤ x ≤ L*. Inserting
Eq. (4) in Eq. (2a)2 allows the differential equation in the perfectly
plastic nanocrystal to be obtained as


2 d2εp
i

dx2
+ �̄ − �0

ˇ
= 0 ⇒ εp

i
= −1

2
�̄ − �0

ˇ
2
x2 + Aix + Bi, (5)

where i = 1,2 denotes the areas to the right and left of the interface,
respectively. In order, therefore, to obtain the plastic strain distri-
bution in the boundary layer we need to find the constants A1, B1,
A2, B2, as well as the length of the boundary layer L*. The following
boundary layer (x = ± L*) and grain boundary (x = 0) conditions are
used:

εp
1(L∗) = 0, εp

2(L∗) = 0, εp
1(0) = εp

2(0),

[�] = 	 ⇒ dεp
1

dx

∣∣∣∣
x=0−

− dεp
2

dx

∣∣∣∣
x=0+

= 	

ˇ
2
,

�(L∗) = ˇ
2 dεp
2

dx

∣∣∣∣
x=L∗

= 0. (6)

Eq. (6)a and Eq. (6)b ensure continuity of the plastic strain
between the purely elastic grain and the plastic boundary layer; Eq.
(6)c ensures continuity of the plastic strain across the grain bound-
ary; Eqs. (6)d and (6)e correspond to the boundary conditions given
in Eqs. (2c)2 and (2b)1.

Solving Eq. (6) with εp given by Eq. (5) allows the constants of
the plastic strain, as well as the thickness of the boundary layer that
deforms along with the grain boundary to be obtained:

L∗ = 	

2(�0 − �)
, A1 = 	

2ˇ
2
, B1 = 	2

8ˇ
2(�0 − �)
,

A2 = −A1, B2 = −B1. (7)

The boundary layer thickness L*, however, is a fraction of the
grain size d, hence L* = ad, where a is a constant. According to
Hall–Petch, the yield stress �0 of the grain can be set equal to k/

√
d,

where k is the Hall–Petch slope, hence Eq. (7) takes the form:

L∗ = 	

2(�0 − �)
⇒ � = k√

d
− 	

2ad
. (8)

Eq. (8) depends on the deforming boundary layer thickness and
on the interface parameter 	 , hence it gives the stress required in
order to initiate deformation in the grain boundaries. But since
deformation at the nanoscale is initiated and governed through
grain boundary deformation, the stress given by Eq. (8) can be iden-
tified with the yield stress of the nanocrystal. Eq. (8) can, therefore,
be used to model experimental data which show how the yield
stress in nanomaterials depends on their grain sizes.

Furthermore, the above gradient plasticity model can be used to
obtain the stress required for continuous deformation within the
boundary layer. This is done by substituting the various constants
of Eq. (7) in Eq. (5) and integrating between −L* ≤ x ≤ L*. The mean
plastic strain in the grain boundaries is then given by

ε̄p = (�0 − �)(L∗)2

6ˇ
2
+ 	2

8ˇ
2(�0 − �)
− 	L∗

4
, (9)

which in turn can be solved for � providing the following
stress–strain relation in the boundary layer (for convenience we
let � ≡ �b).

�b = �0 − 3
L∗

(
	

4
+ ˇ
2

L∗ ε̄p

)

+
√

3

(L∗)2

√
48(ˇ
2ε̄p)2 + 	L∗(24ˇ
2ε̄p − 	L∗). (10)

To obtain the overall stress–strain response, one must also
account for the deformation taking place in the grains, since it is
assumed that with continuous deformation the grain interior will
eventually also yield. A rule of mixtures is used, by which the over-
all yield stress �̄y depends on the flow stress in the grains (�g) and
the flow stress in the boundary layer (�b), as �̄y = (1 − f )�g + f�b,
where f = 2L*/d is the volume fraction of the boundary layer. To
allow for eventual perfect plasticity a Voce-type model is used
�g = �f + (�s − �f) tanh [h0ε̄/(�s − �f)] with �s = �0s + b/

√
d [11],

where �f denotes the friction stress, �s the saturation stress and h0
the initial hardening modulus. Therefore, the stress–strain relation
for the deforming nanocrystal is given as

�̄ = (1 − f )�g + f�b = (1 − 2a)
[

�f + (�s − �f) tanh
(

h0ε̄

�s − �f

)]

+ 2a�b, (11)

where �b is given in Eq. (10). Therefore, Eq. (11) can be used to
predict how grain size affects the overall flow stress in materials.

2.2. Gradient plasticity model utilizing wavelet analysis

Although the model presented in the previous subsection is
rather efficient in capturing interfacial effects, the key constants
have not yet yielded to precise physical interpretation. The higher-
order (�) boundary condition requirements, arising from the use
of the strain gradient, is another physical drawback, which was
circumvented in recent works of Aifantis and his co-workers [12]
through the use of wavelet analysis as follows. The initial gradient
constitutive equation for the flow stress has the form [12–14]:

� = �(εp) − c∇2εp, (12)

with �(εp) denoting the “homogeneous” part of the flow stress and
c the so-called gradient coefficient related to the internal length
of the previous gradient theory as c ∼ 
2. As proposed in [12–14],
the wavelet representation ıs of the ı-function multiplied by a fac-
tor s0, given by s0ıs(x) = (s0/2s

√
�) exp(−x2/4s2), can be used to

express a shear band solution [8,9] or localized distribution of strain
ε of the form ε = ε∞ + s0ıs(x), with ε∞ denoting the uniform strain
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