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a b s t r a c t

In this paper, we show that nano- and micro-indentation hardness data can be represented adequately
by the strain gradient plasticity (SGP) theory if the uniformity of the dislocation spacing is taken into
account. To give relevant information on the plastic deformation process, we suggest to use a hardness
length-scale (HLS) factor equal to Ho ·

√
h∗, where Ho is the macro-hardness and h* the characteristic

scale-length deduced from the hardness–depth relation of the SGP theory. Theoretically, the HLS factor
is proportional to both the shear modulus and the Burgers vector, depending on the dislocation spacing.
Applied to various crystalline metals, the representation of the experimental HLS factor as a function of
the theoretical one shows two distinct linear behaviours related to the micrometer and nanometer depth
regimes associated with a uniform dislocation organisation beneath the indenter and with dislocations
located at the vicinity of the indenter tip in a largest plastic zone, respectively.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In indentation, it is well recognized that the hardness value
of materials could be independent of load, it could increase or
decrease with load, and it could show a complex variation with
load changes [1]. At low loads the effect of the surface layers with
different material properties is more pronounced. However, as the
indentation depth increases, the bulk effect becomes more dom-
inant and eventually there is no change in the hardness value
with the load. In general, this load-dependence of micro-hardness
is known as the indentation size effect (ISE). This phenomenon
has been associated with various causes such as work hardening,
roughness, piling-up, sinking-in, shape of indenter, surface energy,
varying composition and crystal anisotropy, which have been all
discussed extensively by Cheng and Cheng [2]. Many relationships,
dating from 1885 to the present, have been suggested to describe
the load-dependence of hardness. In recent years, Ma and Clarke [3]
and Nix and Gao [4] have introduced the concept of strain gradient
plasticity (SGP) based on Taylor’s dislocation theory. Besides, Nix
and Gao [4] have shown that the ISE behaviour of crystalline mate-
rials can be accurately modelled using the concept of geometrically
necessary dislocations (GND). The authors based their reasoning
on the experimental law needed to advance a mechanism-based
theory of strain gradient plasticity. For a glassy polymer, Lam and
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Chong [5] describe the hardness–depth variation using a SGP the-
ory, which differs from that of Nix and Gao [4] in the manner in
which dislocations of the global plastic deformation process are
separated. Abu Al-Rub and Voyiadjis [6] have developed a similar
relationship to determine a material length-scale using micro-
hardness results. The relation between micro-indentation hardness
and indentation depth variables, macro-hardness and length-scale
parameters involves an exponent, which can vary between 1 and 2
corresponding to the relations of Lam and Chong [5] and Nix and
Gao [4], respectively.

On the other hand, Nix and Gao’s model of GND underneath a
sharp indenter is well recognized and nowadays largely used to rep-
resent micro-indentation hardness data. The relation established
by Nix and Gao [4] between micro-indentation hardness, H, and
indentation depth, h, is given by:(
H

Ho

)2
= 1 +

(
h∗

h

)
(1)

where Ho is generally called the macro-hardness and corresponds
to the hardness that would arise from the statistically stored dis-
locations alone, in the absence of any geometrically necessary
dislocations. The distance, h*, is the characteristic scale-length
which characterizes the depth-dependence of hardness.

Huang et al. [7], after analysing numerous works [8–16] have
reported that nano-indentation hardness data do not follow Eq.
(1). For the majority of these authors, nano-indentation and micro-
indentation typically refer to indentation depths below and above
100 nm, respectively. On the other hand, in order to explain the dis-
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Fig. 1. Scheme of a conical indenter showing the tip blunt (Rblunt) and the charac-
teristic parameters for describing tip radius effects: hblunt to compare a perfect cone
to an indenter and hball corresponding to a ball indentation depth.

crepancy between Eq. (1) and nano-indentation hardness data, the
authors advanced two factors linked to the effect of the indenter tip
radius and the storage volume for the GND. As shown in Fig. 1, the
effect of the tip radius greatly depends on the blunt tip indenter.
For a new indenter, the tip radius (Rblunt in Fig. 1) is generally close
to 50 nm but it can reach more than 500 nm when the indenter
is considered as defective. Geometrical considerations allow the
calculation of hblunt and hball, equivalent to a ball penetration, as
a function of the tip radius, Rblunt, and the cone semi-angle,  ,
measured at the tip indenter. The calculations indicate that:{
hblunt = Rblunt ·

(
1

sin  
− 1

)
/= 0.06Rblunt

hball = Rblunt · (1 − sin  ) /= 0.06Rblunt

(2)

where  is equal to 70.3◦, which gives a cone area function equiv-
alent to those obtained with a Berkovich and a Vickers pyramid
indenters.

For a new indenter, hblunt and hball are both equal to 3 nm which
can be often neglected in comparison with the experimental inden-
tation depths, h. For a blunted indenter, it is not so obvious since the
two corrected depths are equals to 30 nm which are relatively high
values compared to typical nano-indentation depth values. How-
ever, the indenter tip radius is usually taken into account through
a corrected indented area for the calculation of the actual nano-
indentation depth into the material. According to Huang et al.
[7], the indenter tip radius effect cannot alone explain the nano-
indentation size effects. As a consequence, the difference should
be mainly connected to a factor representative of the dislocations
network and jointly of the storage volume of the dislocations. That is
why, in order to represent nano-indentation hardness data, Huang
et al. [7] suggest the consideration of a maximum allowable GND
density allowing the representation of the hardness data below and
above the limit value between nano- and micro-hardness data.

Fig. 2 represents the model of Huang et al. [7] applied to hardness
data resulting from indentation experiments performed by Feng
and Nix [14] on magnesium oxide (MgO). On this figure, the authors
have plotted Nix and Gao’s model which describes adequately the
hardness data for indentation depths higher than approximately
200 nm. We can notice that this limiting indentation depth value is
twice the typical value of 100 nm admitted by some authors for
delimiting nanometer and micrometer depth regimes. As a first
observation, the limiting indentation depth does not seem to have a
fixed value and depend on the material properties and the indenter
tip radius. In addition, the model of Huang et al. [7] is not able to rep-
resent adequately the hardness–depth variation in the depth-range
located between the two indentation scales of measurement, i.e. for
indentation depths between 100 and 300 nm for the analysed mate-

Fig. 2. Square of indentation hardness, H2, versus the reciprocal of indentation
depth, 1/h, given by the finite element analysis for MgO. Nix and Gao’s model is
also shown (without accounting for GNDmax) [7].

rial, as shown in Fig. 2. That is why, to overcome such a discrepancy
at the transition stage between nanometric and micrometric scales,
Zong et al. [17] suggested that the hardness–depth data could be
modelled in two separate zones by means of two straight lines
represented by Eq. (1). Subsequently the authors give two sets of
characteristic indentation parameters (Ho and h*) respectively to
describe nano- and micro-indentation experiments. However Zong
et al. [17] do not give additional physical explanations to inter-
pret jointly the macro-hardness values (Homicro and Honano) and
the characteristic scale-lengths (h∗

micro and h∗
nano).

In the present paper, we have reanalysed various nano- and
micro-indentation hardness data obtained on crystalline metals.
We show that the hardness–depth relationship, originally estab-
lished by Nix and Gao [4], is in reality well adapted to represent the
bi-linear indentation behaviour on the two scales of measurement
if some precautions are taken in accordance with the observations
of Durst et al. [15] concerning the size of the plastic zone. In order to
render more pertinent the comparison of the two couples (Ho and
h*) deduced from nano- and micro-indentation experiments, we
suggest a new indentation parameter called hardness length-scale
(HLS) factor since it is capable to describe the uniformity of the dis-
location organisation beneath the indenter in the two indentation
depth regimes. From an experimental point of view, this parame-
ter is directly linked to the slope of the straight line representing
the square of the hardness versus the reciprocal indentation depth.
In practice, HLS factor is equal to Ho

√
h∗. Its experimental value

is then compared to the theoretical product �
√
b resulting from

the SGP theory, where � is the shear modulus and b the Burgers
vector. The ratio between these two products is a constant which
is only linked to the dislocation spacing and jointly to the size of
the plastic zone. In micro-indentation, this factor corresponds to
that of Nix and Gao’s model confirming, therefore, the SGP theory.
In nano-indentation, the SGP factor should take into account the
non-uniformity of the dislocation spacing underneath the inden-
ter, or the largest plastic zone, to be valid. As a main result, we
clearly demonstrate that the difference between nano- and micro-
indentation comes from the dislocation spacing under the indent.
Then, to jointly interpret nano- and micro-indentation hardness
data, we suggest the calculation of the hardness length-scale factor
which gives more information on the plastic deformation pro-
cess itself. Note that this original approach involves the maximum
allowable GND density in the same way as the model of Huang et
al. [7] and the model of Durst et al. [15].
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