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The single-screw extruder is commonly used in polymer processing where the performance of the mixing
section is significant in determining the quality of the final product. It is therefore of great interest to
simulate the flow field in a single-screw extruder. In this paper simulations of non-Newtonian fluids in a
single-screw extruder are performed using the lattice Boltzmann model.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

A single-screw extruder is commonly used in polymer processing.
The mixing performance of the extruder considerably influences the
quality and morphology of the final product. For this reason the flow
field in the mixing section has been studied by a number of authors
to gain a better understanding of the process. Yao et al. (1996, 1997)
used the finite difference method (FDM) to determine the flow field
in a single-screw extruder geometry. The simulations were shown
to be in good agreement with the results of a flow visualisation
experiment using high viscosity corn syrup. Horiguchi et al. (2003)
used the lattice gas method (LGM) to examine the same problem. The
LGM results were found to be in good agreement with visualisation
experiments. Horiguchi et al. (2003) also considered a quantitative
comparison with theory. This indicated that the LGM produced a
more accurate representation of the flow field compared to the FDM;
however, there was still a discrepancy between the LGM simulation
and the analytic expression. Simulations using the lattice Boltzmann
model (LBM) were performed by Buick and Cosgorve (2006). The
LBM is a simplified kinetic model (Chen and Doolen, 1998) which has
developed from the LGM. The LBM was shown to simulate the flow
in the single-screw extruder more accurately and more efficiently
than the LGM.

The simulations described above considered the fluid in the
single-screw mixer to be a Newtonian fluid. In a Newtonian fluid
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the viscosity, defined as the ratio of the stress to the velocity gradient
of the fluid, is constant. In many practical situations the fluid in a
single-screw extruder will exhibit non-Newtonian behaviour. Non-
Newtonian fluids have a viscosity which is not constant, it can vary
with, for example, shear, temperature or time.

Here we will consider only shear dependent non-Newtonian flu-
ids. A dilatant or shear-thickening fluid has an apparent viscosity
which increases with increasing shear, for example corn starch, clay
slurries and certain surfactants. A pseudoplastic or shear-thinning
fluid has an apparent viscosity which decreases with increasing
shear, for example polymer melts such a molten polystyrene, poly-
mer solutions such as polyethylene oxide in water, paint and blood
(Quarteroni et al., 2000).

A feature of the LBM is that it is suitable for simulating a non-
Newtonian fluid. Gabbanelli et al. (2005) considered a power-law
non-Newtonian fluid where the apparent viscosity was calculated
as a function of the rate of strain which was found by differentiating
the velocity field. The model was found to be first-order accurate for
simple flows and was further applied to study flow in a reentrant
corner geometry. Kehrwald (2005) considered an LBM for shear-
thinning fluids where the rate of strain was determined from known
quantities without the need for differentiation. This model was ap-
plied to liquid composite moulding. Artoli and Sequeira (2006) also
considered a model where the rate of strain was found without dif-
ferentiating the velocity field. They applied their model to oscillating
flows. Non-Newtonian simulations of blood flow using the LBM have
also been considered by a number of authors (Ouared and Chopard,
2005; Artoli et al., 2006; Boyd and Buick, 2007; Boyd et al., 2007).
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It has been shown that second-order accuracy can be obtained using
the LBM with a non-Newtonian viscosity described by a power-law
model (Boyd et al., 2006). Preliminary results have shown qualitative
differences between the velocity fields of a shear-thinning fluid and
a Newtonian fluid in a single-screw extruder (Buick and Boyd, 2006).

The success of the LBM in simulating flow in a single-screw ex-
truder and in simulating non-Newtonian fluids, coupled with the
evidence that there is a significant difference between Newtonian
and non-Newtonian flows in a screw-extruder, have motivated the
present study. The LBM for a non-Newtonian fluid is described in
Section 2. In Section 3 the validity of the model is investigated and
simulation results are presented for a range of both shear-thinning
and shear-thickening fluids.

2. The lattice Boltzmann model

The LBM (Chen and Doolen, 1998; Succi, 2001; Wolf-Gladrow,
2000) has recently been developed as an alternative technique
for simulating fluid flow. Here we describe the Newtonian two-
dimensional D2Q9 model and the modifications required to simulate
a power-law, non-Newtonian fluid.

2.1. The D2Q9 LBM model

The model evolves according to the kinetic equation

fi(x + ei, t + 1) − fi(x, t) = �i (1)
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for i = 5, 6, 7, 8. The left-hand side of Eq. (1) represents streaming of
the distribution functions at unit speed from one site x to a neigh-
bouring site on a regular underlying grid defined by the link vectors
ei. The right-hand side of Eq. (1) is the collision function which de-
termines the manner in which the distribution functions interact at
each site. The form of Eq. (1) makes the LBM discrete in both space
and time.

The fluid density, �, and velocity, u, are determined locally at
each site and each time-step as follows:

�(x, t) =
i=8∑
i=0

fi(x, t) and �(x, t)u(x, t) =
i=8∑
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fi(x, t)ei. (2)

Conservation of mass and momentum requires that the collision
term, �i in Eq. (1) satisfies

i=8∑
i=0
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This is achieved in the LBM (Qian et al., 1992) using the Bhatnagar
et al. (1954) equation

�i = −1
�

(fi − f i), (4)

which mimics the collisions by a relaxation towards an equilibrium
distribution function f i given by

f i(r, t) = �(1 + 3ei · u + 9
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rate of relaxation is determined by the relaxation time �. Combining
Eqs. (1) and (4) and performing a Taylor series expansion up to
second order gives
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Introducing �, the Knudsen number (Wolfram, 1986), which is the
ratio of the mean free path to the characteristic length of the system;
applying a Chapman–Enskog expansion (Frisch et al., 1987):
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and collecting terms up to second order in �, leads to the mass and
momentum equations (Chen and Doolen, 1998)
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where the momentum flux tensor is given by
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Greek subscripts are used to represent vector components while
Roman subscripts label the distribution functions, fi and f i, and link
vectors, ei. Using the expression for the equilibrium distribution
function, Eq. (5), gives
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In a fluid with pressure p and kinematic viscosity � the momentum
flux tensor takes the form

	�� = �u�u� + p
�� − 2��S��, (12)

where S�� is the strain tensor. Thus, expressing the pressure as p =
c2s � we see that the speed of sound is cs =1/
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Evaluating Eq. (13) using the first-order Chapman–Enskog expansion
of Eq. (6) gives (Chen and Doolen, 1998)
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where

� = (2� − 1)/6. (15)

In the incompressible limit, ���=0, the fluid density can be removed
from the derivatives in Eqs. (8) and (14). Thus the LBM scheme sat-
isfies the continuity and Navier–Stokes equations for a Newtonian
fluid with kinematic viscosity �. The value of the kinematic viscosity
is determined by the free parameter � (Eq. (15)) which is introduced
in the collision function, Eq. (4).
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