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Abstract

In this contribution, we present a finite deformation material model for shape memory alloys (SMAs) which includes the effect of pseudoelasticity
and pseudoplasticity. A special algorithm has been developed to incorporate the concept into a finite-element (FE) code. The final aim of the research
work is to investigate whether FE simulations of SMA applications should be based on large-strain formulations as the transformation strain during
the phase transition can reach up to 10%. If such a large-strain model was not necessary the computational cost of the numerical investigations
could be reduced significantly.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Shape memory alloys (SMAs) can undergo diffusionless
and reversible phase transformations between a higher ordered
austenite phase and a lower ordered martensite phase as a
result of changes in temperature and/or the state of stress. Con-
sequently, SMAs exhibit several macroscopic phenomena not
present in traditional materials (e.g. pseudoelasticity and shape
memory effect). These unique features of SMAs have found
numerous applications in automotive and aerospace industries
as well as in the field of medical technology. The increasing
use in commercially valuable applications has motivated a vivid
interest in the development of accurate constitutive models to
describe the behaviour of SMAs. Meanwhile, a large number of
material models have been developed to describe the complex
behaviour of SMAs, particularly the effect of pseudoelasticity.
These models follow three different approaches depending on
whether a formulation at the micro-, the meso- or the macro-
scale is used. The micro-level models are generally based on the
description of micro-scale effects such as nucleation, interface
motion or twin growth. They consider phase volume fraction as
a consequence of interface movements (e.g. [1,2]). The meso-
level models combine micro-mechanical aspects (such as habit
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planes, martensite variants, etc.) and macro-scale thermodynam-
ics. The constitutive equations are defined at the micro-scale.
The response on the macro-level is obtained due to the use
of proper homogenization techniques (e.g. [3,4]). The macro-
level models deal with macroscopic quantities, which lead to a
description of the global mechanical behaviour [5–7]. One of
the advantages of the latter type of models is their convenient
implementation into a finite-element (FE) code. Therefore, they
are widely used in structural engineering applications. Although
a lot of these material models have been implemented into the
finite-element method, only a few of them are derived in the
framework of finite deformation [8–10]. The goal of this work
is to propose a three-dimensional material model which is able
to reproduce the pseudoelastic behaviour within the large-strain
regime. The model has been compared to the corresponding
small deformation model to investigate, whether the effect of
pseudoelasticity can be realistically represented by means of
small-strain formulations.

2. Macro-mechanical model

2.1. Kinematic assumptions

At the continuum mechanical level we introduce the defor-
mation gradient

F := FeFt ⇒ Fe = FF−1
t (1)
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and its decomposition into an elastic part Fe and a “transforma-
tion” part Ft which describes the transition from the austenitic
to the martensitic phase. This multiplicative split of the defor-
mation gradient F is known from crystal plasticity (e.g. [11]). In
the same manner we decompose the transition part Ft according
to

Ft := FteFtd ⇒ Fte = FtF−1
td (2)

where Fte is used to model the energy storage and the second
term Ftd expresses in conjunction with the Helmholtz free energy
the physical dissipation during the phase transition.

2.2. Free energy

The Helmholtz free energy is defined as

Ψ = Ψe(Ce, z) + Ψt(Cte ). (3)

The first term Ψe includes the energy storage in the material at
elastic deformations due to mechanical loading and Ψt repre-
sents the energy storage during the phase transition. Exploiting
the principle of material objectivity the Helmholtz free energy
depends only on the “elastic” Cauchy–Green tensors

Ce = FT
e Fe = F−T

t CF−1
t , (4)

Cte = FT
teFte = F−T

td CtF−1
td . (5)

Due to the use of the martensitic volume fraction z it is consid-
ered that two different phases coexist during the phase transition.
z has always a value between 0 and 1 whereby z = 0 denotes
pure austenite and z = 1 pure martensite. Certainly the mate-
rial behaviour of shape memory alloys is strongly temperature
dependent so that in general the temperature should be con-
sidered as an additional independent variable. However, in the
present contribution we focus mainly on the effect of pseudoelas-
ticity which may be displayed under approximately isothermal
conditions. Therefore, we choose to treat the temperature as a
constant.

2.3. Thermodynamical framework

Assuming isothermal conditions the Clausius–Duhem form
of the entropy inequality takes the form S · 1

2 Ċ − Ψ̇ ≥ 0 where
S denotes the second Piola–Kirchhoff stress tensor. We insert
(3) into the inequality and obtain the form

S · 1

2
Ċ − ∂Ψe

∂Ce
· Ċe − ∂Ψe

∂z
ż − ∂Ψt

∂Cte
· Ċte ≥ 0. (6)

In analogy to former publications [5,7] the martensitic volume
fraction z can be expressed in terms of the Green–Lagrange strain
Et := 1

2 (Ct − 1):

z := ωγ ||Et|| (7)

Here, ωγ is a material parameter which describes the length of
the stress–strain hysteresis. The material time derivative of z is

then computed by means of the relation

ż = ωγ

Et

||Et|| · 1

2
Ċt = ωγ

(
Ft

Et

||Et||FT
t

)
· dt (8)

where the symmetric part of the deformation rate tensor dt is
defined by dt := 1

2 F−T
t ĊtF

−1
t . We further rewrite the deforma-

tion rates Ċe and Ċte in the format

Ċe = −lTt Ce + F−T
t ĊF−1

t − Celt, (9)

Ċte = −lTtdCte + F−T
td ĊtF−1

td − Cte ltd . (10)

In this context the definitions lt := ḞtF
−1
t and ltd := ḞtdF−1

td have
been used. After the application of several rules from tensor
calculus and the exploitation of the symmetry of ∂Ψe/∂Ce and
∂Ψt/∂Cte the Clausius–Duhem inequality (6) is transformed into
the relation(

S − 2 F−1
t

∂Ψe

∂Ce
F−T

t

)
· 1

2
Ċ

−
(

2 Fte
∂Ψt

∂Cte
FT

te + ωγ �Ψ Ft
Et

||Et||FT
t

)
· dt

+
(

2 Ce
∂Ψe

∂Ce

)
· lt +

(
2 Cte

∂Ψt

∂Cte

)
≥ 0. (11)

The introduced material parameter �Ψ considers the difference
of the internal energy and the entropy between the austenitic
and the martensitic phase [7]. At this point we assume that Ψe
and Ψt are isotropic functions of Ce and Cte , respectively. One
consequence of this specialisation is the coaxiality of Ce and
∂Ψe/∂Ce as well as of Cte and ∂Ψt/∂Cte . Therefore, also the
Mandel stress tensors

M := 2 Ce
∂Ψ

∂Ce
and Mt := 2 Cte

∂Ψ

∂Cte
(12)

are symmetric reducing the inequality to(
S − 2 F−1

t
∂Ψ

∂Ce
F−T

t

)
· 1

2
Ċ + (M − X) · dt + Mt · dtd ≥ 0(13)

where the back stress

X := 2 Fte
∂Ψt

∂Cte
FT

te + ωγ �Ψ Ft
Et

||Et||FT
t (14)

has been introduced.

2.4. Constitutive equations

The final form of the Clausius–Duhem inequality is suffi-
ciently satisfied by the relation

S = 2 F−1
t

∂Ψe

∂Ce
F−T

t (15)

for the second Piola–Kirchhoff stress tensor S and the evolution
equations

dt = λ̇
MD − XD

||MD − XD|| = ∂ΦSMA

∂M
(16)
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