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Experimental verification of a micromechanical model for polycrystalline
shape memory alloys in dependence of martensite orientation distributions
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Abstract

We make use of a micromechanical model for polycrystalline shape memory alloys, whose main focus is the orientation distribution of the
martensitic low symmetry variant. By energy minimization, the internal reorientation of martensite can be predicted. Hysteresis effects are included
via the hypothesis that changes in the orientation distribution are connected to energy dissipation. From these considerations, we obtain evolution
equations for the orientation distribution in terms of the thermomechanical driving forces. Comparing our model to results from synchrotron
diffraction experiments, good agreement is found between experimentally observed and analytically predicted orientations of austenite and stress-
induced martensite.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The focus of this paper is a comparison between analyti-
cal modeling and experimental testing of polycrystalline shape
memory alloys. The material behavior is modeled based on the
orientation distribution of the martensitic low-symmetry phase
within the polycrystal. The model we use here has first been
presented in [1]. By optimization of the global energy over
all possible orientation distributions, we identify the thermo-
dynamical driving forces as fundamental parameters governing
the microstructural development. These driving forces are then
compared to experimental results obtained by synchrotron
diffraction experiments.

Details of the experimental procedure used are given in [2,3].
A first ansatz to model the material behavior of microstruc-

tured shape memory alloys by energy optimization has been
presented in [4] and extended to include dissipative effects and
inelasticity in [5]. A thermodynamical framework with a focus
similar to this paper has been given in [6].
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2. Micromechanical model

An ideal polycrystalline shape memory alloy consists of an
infinite number of randomly oriented grains. For modeling pur-
poses, however, the number of different crystal orientations
is restricted to a large, but finite number N. Starting from an
arbitrary fixed coordinate system, every crystal orientation j is
described by a rotational tensor Rj . Together with the linearized
Bain strain εt describing the transformation from the unde-
formed austenite reference configuration to the lower symmetry
martensitic structure, the transformation strain for orientation j
is

ηj = RT
j εtRj. (1)

Here the arbitrary reference coordinate system has been chosen
such that εt is a diagonal matrix with entries εt1, εt2, and εt3.

The volume fraction corresponding to the jth martensite
orientation is now denoted by λj , j = 1, . . . , N, whereas λ0
corresponds to the transformation strain η0 = 0 of the austenite.
Mass conservation then leads to the constraints

λj ≥ 0,

N∑
j=0

λj = 1, j = 0, . . . , N. (2)
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We assume a simple linear elastic material law:

�j(εj, ηj) = 1
2 (εj − ηj) : A : (εj − ηj) + αj, (3)

where A is the elasticity tensor with components Aklmn =
�δklδmn + 2μδkmδln, “:” means contraction with respect to two
indices, and αj denotes the chemical energy of the jth variant,
which only differs from austenite to martensite but is the same for
all martensite variants for reasons of symmetry. The isotropy of
the elastic constants may be assumed for a polycrystalline mate-
rial since anisotropies are averaged out for a sufficiently large
number of randomly oriented grains. Isotropy is, however, not a
necessary condition required in our model.

In the energy formulation (3), we introduced the strain εj of
the crystals of orientation j. The global strain ε is then given as
the average

ε =
N∑

j=0

λjεj, (4)

which leads to the following formulation of the global energy
for fixed volume fractions:

�rel(ε, λ) = inf

⎧⎨
⎩

N∑
j=0

λj�j(εj, ηj)

∣∣∣∣∣∣
εj, ε =

N∑
j=0

λjεj

⎫⎬
⎭ . (5)

This way of calculating the free energy corresponds to a relax-
ation by convexification, which is actually a very crude way of
obtaining lower bounds as estimates to the energy of a multi-
variant material. For more sophisticated ways of relaxing energy
functions and the corresponding mechanical interpretations, see
[7,8]. For a comparison of upper and lower bounds to the free
energy in order to estimate the quality of the convexification
bound, see [9–11].

Minimizing (5) over the crystal strains εj yields the straight-
forward expression for the relaxed energy

�rel(ε, λ) = 1

2
(ε − ηeff) : A : (ε − ηeff) + αeff, (6)

with the effective transformation strain and chemical energy

ηeff =
N∑

j=0

λjηj and αeff =
N∑

j=0

λjαj. (7)

The crystal strains for which this minimal energy is achieved are

εj = ε + ηj − ηeff. (8)

3. Time evolution

In order to fully describe the material behavior, an ansatz for
the dissipation within the polycrystal is needed. Since changes in
the orientation distribution correspond to a growth and shrinking
of domains containing certain variants, an intuitional assumption
is the dissipation function

�(λ̇) = r|λ̇| (9)

which connects the Euclidian norm of the rate of change of
the orientation distributions linearly to the dissipated energy. A

discussion of different dissipation functions in micromechanical
and multiscale models for shape memory alloys may be found
in [12].

To derive the evolution equations, we start from the minimum
principle

Lε,λ(λ̇) = d

dt
�rel(ε, λ) + �(λ̇)

→ min under the constrains (2). (10)

A mathematically identical formulation has been derived in [13],
however in a mechanically different setting.

Furthermore, we introduce the thermodynamically conjugate
driving forces to λ̇

qj = −∂�rel

∂λj

= ηj : A : (ε − ηeff) − αj. (11)

Variational calculus and a Legendre transform with respect to
the driving forces then yield the evolution equation

λ̇A = ρ devAqA (12)

constrained by (2) and the Kuhn–Tucker conditions

ρ ≥ 0, �(q) = |devAqA| − r ≤ 0, ρ� = 0. (13)

Here we have introduced the notions of an active set
A = {j|λj > 0} and its active deviator devAxA = xA −
(
∑

Axj)1A/n, n being the number of elements of the active set
and 1A the n-vector with 1 in every entry. The index A means
the restriction of an (N + 1)-vector to the active set A.

A more detailed derivation of this model is given in [1,14].

4. Examples

The ability of the procedure presented above to model the
most important effects in the behavior of polycrystalline shape
memory alloys, such as pseudoelasticity and the shape-memory
effect, has been shown in [1,14]. In this work, we focus on the
comparison of analytically and experimentally obtained orien-
tation distributions.

In Eq. (11), the term

σ = A : (ε − ηeff) (14)

equals the global stress. From experimental observations and
analytical results obtained with the model presented above, it is
known that the transformation between austenite and martensite
mainly takes place in the plateau where the stress is approx-
imately constant. Consequently, the driving forces and thus,
following Eq. (12), also the growth rates of the domains of cer-
tain orientations are constant over the whole plateau in which
the transformation takes place. For a qualitative comparison, we
may therefore assume that the probability of finding a certain ori-
entation of the martensite is proportional to the corresponding
driving force, hence

λj = max{0, k1(ηj : σ − k2)} for j �= 0, (15)

for appropriate constants k1, k2 > 0.
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