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An evaluation of the rate-controlling flow process in
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Abstract

Using experimental data and theoretical calculation for Newtonian creep in polycrystalline ice, it is demonstrated that unlike most other materials,
in which the rate-controlling flow process is edge dislocation climb under saturated condition, the rate-controlling flow process of polycrystalline ice
is dislocation glide along the basal plane under a constant dislocation density. The dislocation density during Newtonian creep of ice is determined
by the initial state instead of the magnitude of the Peierls stress. The transition stress (threshold) from power-law creep to Newtonian creep is
controlled by the dislocation density instead of the Peierls stress. The activation energy of the Newtonian creep is similar to that of the self-diffusion
due to the requirements of the diffusion of protons during dislocation glide.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental studies of the creep processes in polycrystalline
ice (including both freshwater ice and sea ice) have shown the
occurrence of a transition from power-law dislocation creep
(stress exponent equals 3) at high stresses to a Newtonian creep
(stress exponent equals 1, see Table 1). Generally, this fall-off has
been observed at stresses lower than 0.2 MPa. It should be noted
that most low-stress exponents with values higher than 1 are
obtained from experiments performed in the transition regime
between power-law behavior and Newtonian creep, and the value
of the exponent tends to approach 1 as the stress continues to
decrease (see, for example, data summarized by Langdon [14]).
Additionally, Cole [12], and Cole and Durell [11] demonstrated,
with experiments on both polycrystalline sea ice and freshwater
ice, that the stress level associated with the fall-off from n = 3
behavior increases with the specimen’s dislocation density.

Weertman [15] indicated that a decreased stress exponent
might be caused by the diffusion-based (Nabarro–Herring creep)
creep mechanism. However, Duval et al. [16] indicated that since
ice has very low diffusion coefficients and the activation energy
for lattice diffusion normalized by the product of the melting
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temperature and the gas constant has a larger value for ice than
for most materials, diffusion alone will not generate observ-
able strain rates in Newtonian deformation stage, at least for the
grain sizes that are typically found in nature. Song et al. [17]
have shown quantitatively that the strain rates predicted by dif-
fusional mechanism are at least an order of magnitude lower
than the experimental counterparts. Thus, the low-stress expo-
nent is expected to be due to a creep mechanism other than the
Nabarro–Herring mechanism.

Another possible mechanism for creep at low stresses of
materials is grain boundary sliding (GBS) accommodated by
other mechanisms. Wang [18] has shown that for most mate-
rials, grain size-sensitive Newtonian behavior at low stresses
can be explained by GBS accommodated by either diffusion or
GBS itself. In diffusional creep, the diffusion of matter from one
grain boundary to the other causes the straining of the sample
and GBS is only a supplementary process. But in GBS creep,
GBS leads to grain rearrangement and thus contributes to stain
while diffusion occurs as an accommodation process to main-
tain the coherency of the grains. In the studies of Goldsby and
Kohlstedt [19,20], GBS significantly contributes to deformation
in the range that the stress exponent lower than 2. However,
Duval and Montagnat [21] have shown that GBS as a signifi-
cant creep mechanism is not compatible with the observations
on the development of fabrics (distribution of the orientation of
the c-axes) and microstructures in ice sheet.
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Table 1
Low-stress creep data for coarse-grained ice

Stress exponent Grain size (mm) Temperature (K) References

∼1 1–2 258–268 [1]
0.86–1.15 3–20 254–272 [2]

∼1 0.8 238–273 [3]
∼1 1–10 260–270 [4]
∼1.8 1 271 [5]

1.3 2 273 [6]
∼1.5 1–2 258 [7]

1.8 1–2 260 [8]
1.85 0.5–5 268 [9]

∼1.5 – 260–273 [10]
∼1 3–5 263 [11]
∼1 3–5 253–268 [12]

1.06–1.15 5 263 [13]

The third possible mechanism for the Newtonian behavior
of ice is viscous dislocation creep, named Harper–Dorn (H–D)
creep. Previous studies [22–26] have indicated that the rate-
controlling flow process in Harper–Dorn creep is the climb of
edge dislocations for all materials (including ice) under saturated
conditions and under a constant dislocation density. The transi-
tion from power-law creep to H–D creep probably occurs at or in
the vicinity of the Peierls stress. The dislocation density is inde-
pendent of the applied stress but determined by the Peierls stress.
If this is the case, the transition stress from power-law creep to
Newtonian creep should be independent of the initial dislocation
density. However, Cole [12], Cole and Durell [11], and Song et
al. [17] demonstrated, with experiments on both polycrystalline
sea ice and freshwater ice, that the transition stress increases with
the specimen’s dislocation density. Pimienta and Duval [7], and
Song et al. [17] have suggested that the rate-controlling flow pro-
cess in this viscous behavior might be dislocation glide along
the basal planes with a constant dislocation density. Concerning
the controversies of the rate controlling mechanism (whether it
is edge dislocation climb or basal dislocation glide) in this linear
viscous dislocation creep of polycrystalline ice, the purpose of
this study is to re-examine the rate-controlling mechanism using
extensive data base now available.

2. Possible rate-controlling mechanisms

2.1. Climb of edge dislocations

H–D creep has a linear dependence of strain rate on stress
and activation energy equals to that for lattice self-diffusion.
The general rate equation for H–D creep is of the form [22,23]:

ε̇ = AHD
DLGb

kT

( σ

G

)
(1)

where ε̇ is the uniaxial strain rate, σ the stress, G the
shear modulus, b = 4.52 × 10−10 m the Burgers vector, k
the Boltzmann’s constant, T the absolute temperature, AHD
the dimensionless constant (AHD = 1.4(τp/G)2, where τp is
the Peierls stress) and DL is the lattice diffusion coeffi-
cient of the rate controlling species (DL = Dov exp(−QL/RT),
where Dov = 9.1 × 10−4 m2 s−1 is the frequency factor and

QL = 59.4 kJ mol−1 is activation energy for self-diffusion for
ice). Wang pointed out that this Harper–Dorn model is differ-
ent in two aspects from the climb model proposed by Nabarro
[27] for Al and suggested also for other materials [23]. First, the
strain is contributed by dislocation glide but by dislocation climb
in the Nabarro’s model. Thus, the Wang’s model is capable of
accounting for the large strains produced by H–D creep. Second,
according to Wang’s model, if the initial dislocation density is
lower than the steady state dislocation density, the creep rate
decreases as the strain increases during transient creep. If the
initial dislocation density is higher than the steady state density,
H–D creep may not take place until barriers to dislocation glide
have been sufficiently reduced by recovery processes.

It should be noted that the diffusion activation energy (QL)
cannot be used as proof that the rate-controlling flow process is
dislocation climb (which in turn is controlled by self-diffusion)
for ice because glide mechanisms can also involve the motion of
hydrogen (proton) in the lattice. To determine the constant AHD,
it is necessary to know the magnitude of the Peierls stress (τp),
which is of the form [28]:

τp = G

1 − v
exp

(
2πd

(1 − v)b

)
(2)

where d is the interspacing between slip planes and ν is the Pois-
son’s ratio. Eq. (2) is for an edge dislocation, while for a screw
dislocation, the term 1 − v should be replaced by unity. Since
the thermal vibrations of atoms can serve to lower the misfit
energy of a dislocation, the Peierls stress should be decreased as
the temperature increases. The temperature-dependent Peierls
stress can be expressed as [29]:

τp(T )

G
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(
1
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)−T/10Tm(τp

G

)exp(T/10Tm)
(3)

In Wang’s model, the steady state dislocation density (ρHD,
under saturated condition) in H–D creep is related to the Peierls
stress (τp) by [29,30]:

bρ
1/2
HD = τp

G
(4)

Thus, based on Eqs. (1)–(4), the strain rate of the Newtonian
creep in polycrystalline ice can be determined if we know the
Peierls stress of ice crystals.

2.2. Basal glide of dislocations

It is widely accepted that plastic deformation in ice crystals is
dislocations glide along the basal planes (0 0 0 1). The Burgers
vectors for glide on the basal planes are the three lattice vectors,
which can be written in the form (a/3)〈2 1̄ 1̄ 0〉 [31]. In prin-
ciple, dislocation glide takes place along the glide set instead
of the shuffle set to lower its energy by dissociating into two
Shockley partial dislocations separated by a stacking fault. The
glide-controlled theory indicates that if the applied stress is suffi-
ciently low, dislocations do not multiply, and linear flow process
should be observed with the activation energy of basal glide. A
transition to power law behavior begins when the stress is high
enough to cause dislocation multiplication. Based on dislocation
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