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Abstract

The approximation of the convection–diffusion problem based on the Galerkin method in Cartesian, cylindrical and spherical coordinates
is considered with emphasis in the last two cases. In particular, cylindrical and spherical coordinates can lead to a degeneracy in the global
system of equations. This difficulty is removed by incorporating the factor r into the weight function which is introduced naturally by using

Jacobi polynomials P
(�,�)
k

with �=0 and �=1, 2. By doing this, an unified framework is obtained for handling the typical geometries required
in chemical engineering. Examples are presented based on the Galerkin method for discussing the applicability of this approach.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Typical geometrical configurations required in chemical
engineering problems are the slab, cylinder and the sphere.
For example, tubular reactors are normally described using
2D models with variations in (z, r) coordinates directions and
catalyst used in industry are normally of cylindrical or spheri-
cal shape. The catalyst pellets are usually considered spherical
and symmetric, reducing the spatial dimensionality to 1.

The classical reactor models consist of a set of species mass
balances combined with a heat balance expressed in terms of
temperature, as outlined in textbooks like Froment and Bishoff
(1990) and Fogler (2006). Thus, this type of problems requires
that a set of elliptic equation is solved. The equations are gener-
ally solved using finite difference (FDM), finite volume (FVM)
or orthogonal collocation methods. In spite of this, the numer-
ical solution of convection–diffusion problems constitute still
an active area of research (Stynes, 2005). In particular, reactive
systems are specially challenging due to the different temporal
and spatial scales involved and because most real flows involve
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from few to hundreds of species, requiring in this way that a
large number of coupled equations are solved. Spectral meth-
ods have shown to posses a relevant efficiency for complex
problems such as supersonic reactive flows (Don and Gottlieb,
1998; Don et al., 2003) as compared to the other methods.

For convenience, differential equations can be rewritten in
spherical or cylindrical coordinates. However, the transforma-
tions introduces a coordinate singularity at the origin in the
case of cylindrical coordinates and at the origin and the pole in
the spherical case. Some of the equations generate trivial alge-
braic relations (0 = 0) resulting in an undetermined system of
equations. The solution of the slab geometry by using spectral
methods have been shown to produce optimal results, whereas
for cylindrical and spherical geometries the convergence prop-
erties of the method can be severely affected.

For many singular problems, spectral methods can produce
convergent solutions even with no special treatment. However,
the singularities may be responsible for the very slow con-
vergence degrading the accuracy or computational efficiency.
The convergence can be accelerated significantly by imposing
additional boundary conditions called pole conditions to cap-
ture the behavior of the solution as r → 0 (Eisen et al., 1991;
Huang and Sloan, 1993; Shen, 1997). A different approach is

the use of Gauss Radau collocation nodes which exclude the
center r = 0 avoiding the singularity there and therefore not
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requiring a pole condition (Chen et al., 2000). In order to
avoid the singularity, Lai and Wang (2002) adopted a spe-
cial Fourier series expansion together with grid shifting to
nullify the numerical difficulties introduced by the singular-
ity at the origin. On the other hand, Gerritsma and Phillips
(2000) proposed to construct Jacobi polynomials incorporat-
ing the factor r into the weight function for axisymmetric
problems.

In this work, the idea proposed by Gerritsma and Phillips
(2000) is followed in order to avoid the singularities in the
simulation of the convection–diffusion equation in cylindrical
and spherical coordinates. The Lagrangian interpolant poly-
nomial and quadrature rules are constructed in terms of Ja-
cobi polynomials defined with a weight function which can
compensate the singularity of the pole. The main relevance of
applying the Jacobi polynomials is that a unified framework is
obtained for handling the typical geometries required in chem-
ical engineering.

In Section 2, a general convection–diffusion problem and
its weak formulation (Deville et al., 2002) are presented for
the three different coordinate systems. Section 3 describes the
Jacobi polynomial in general and discusses how to construct
basis function able to handle the different types of singular-
ities. In Section 5, some numerical examples are discussed.
Finally, Section 6 presents the main conclusions drawn from
this work.

2. Convection–diffusion equation

A generic convection–diffusion problem can be written in
cartesian, cylindrical and spherical coordinates as

Lu := −1

�

d

dr

[
��

du

dr

]
+ C

du

dr
= g in � = (0, R), (1)

du

dr

∣∣∣∣
r=0

= 0, (2)

u(R) = 0 (3)

with u ≡ u(r) the unknown function, g ≡ g(r) a given source
term, � ≡ �(r) the diffusivity coefficient, C ≡ C(r) > 0 the
velocity field and

� ≡ �(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 cartesian coordinates,

r cylindrical coordinates,

r2 spherical coordinates

(4)

a function used for distinguishing the different coordinates
systems.

The Galerkin formulation can be recasted in the equivalent
weak form: find u ∈ X(�) such that

A(u, v) = F(v) ∀v ∈ H 1
0 (�) (5)

with the trial space defined as X(�)={u | u ∈ H 1(�), u(R)=
0} and

A(u, v):=
∫ R

0

(
��

du

dr

dv

dr
+�C

du

dr
v

)
dr, v∈H 1

0 (�), (6)

F(v) :=
∫ R

0
�gv dr +

[
��v

du

dr

]
r=R︸ ︷︷ ︸

=0

, v ∈ H 1
0 (�), (7)

where H 1
0 (�) is the Sobolev space. The discretization of

Eq. (5) consists in choosing a finite dimensional trial and test
space, XN ⊂ X(�). For convenience, it is considered that
XN := PN ∩ X(�), with PN the space of polynomials of
degree less than or equal to N. Normally, the basis functions
�i are chosen to be the set of Lagrangian interpolants on the
GLL grid points rq , i.e. �i (rq) = �iq . The integral associated
with the inner product in Eqs. (6) and (7) can be replaced by
numerical quadrature with the quadrature points coinciding
with the ones used for constructing the Lagrangian interpolant
polynomials �i (r).

The discrete solution can be written as

u(r) =
N−1∑
j=0

uj�j (r). (8)

By substituting expression (8) into Eq. (5), choosing systemat-
ically v to be �i and using quadrature integration, the resulting
final algebraic equations can be written as

[A]ij = AN(�i , �j )

=
N∑

q=0

	q�(rq)�(rq)�′
j (rq)�′

i (rq)

+
N∑

q=0

	q�(rq)C(rq)�′
j (rq)�i (rq), (9)

[F]i = FN(�i ) =
N∑

q=0

	q�(rq)g(rq)�i (rq), (10)

where the evaluation of the integrals was performed by using
Gauss integration, with rq and 	q the integration points and
quadrature weights, respectively.

Letting r → 0, then �(r) → 0 for cylindrical and spherical
coordinates, the first algebraic equation gives

[A]0j =
N∑

q=1

	q�(rq)�(rq)�′
j (rq)�′

0(rq) + 0, (11)

[F]0 = 0 + 0. (12)

In general, for all i, the first equation does not result in a 0 = 0,
as a consequence that integration by parts was used to transfer
the derivative to the test function. However, the contribution of
the convective operator to the algebraic system is zero, affecting
the convergence property of the method.
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