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Two-dimensional facet crystal growth of silicon from
undercooled melt of Si–Ni alloy
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Abstract

The two-dimensional facet crystal growth of silicon from the undercooled melt of silicon–nickel alloys has been investigated using a phase-field
model. The phase-field parameters derived at the thin interface limit and the anisotropic interface energy model proposed by Eggleston et al.
have been used in the simulation. The calculated dendrite growth velocity depends on the interface width and the correct values are obtained
when the interfacial Péclet number is sufficiently small. The growth velocity follows a power law relation to undercooling and the exponents are
approximately two for Si–10 wt.% Ni alloy and approximately three for Si–20 wt.% Ni alloy. A dendrite grows maintaining its tip shape and a
scaling law between the tip size of a dendrite and the growth velocity is confirmed. The phase-field simulations have been compared with the
experimental data on the facet dendrite growth velocity in a thin liquid film of Si–6 wt.% Ni alloy and both are acceptable in agreement.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Phase-field models have already been applied to many solid-
ification phenomena and show a wide potential as introduced
in review articles [1–3]. Recently, phase-field approaches to
facet crystal growth have been proposed so as to include highly
anisotropic interface energy [4,5] or interface kinetics [6]. In
usual phase-field approaches, the solid–liquid interface energy
σ(θ) is simply assumed to have fourfold symmetric anisotropy
as

σ(θ) = σ0(1 + ν cos 4θ), (1)

where ν is the intensity of anisotropy and θ is the angle between
the direction normal to the interface and a fixed axis. The equilib-
rium condition at the interface is given by the Gibbs–Thomson
equation

(σ(θ) + σ′′(θ))κ = f L − f S, (2)
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where κ is the curvature radius of interface, and fL and fS are
the free energy densities of the solid and liquid phases, respec-
tively. When ν < 1/15, both sides of the equation are always
positive and a smooth and convex non-facet crystal becomes
stable. Conversely when ν > 1/15, the left-hand side of the equa-
tion becomes negative within so-called missing orientations. As
the interface within the missing orientations becomes thermo-
dynamically unstable, the facet crystal appears to be composed
of only interfaces with stable orientations. Therefore, the pres-
ence of an edge between facet interfaces makes the phase-field
approach difficult. To overcome this difficulty, Eggleston et al.
[4] have proposed the modification of the interfacial energy
within the missing orientations as

σ(θ) = σ(θm)

cos θm
cos θ (−θm < θ < θm), (3)

where θm is the first missing orientation derived from

d

dθ

(
cos θ

σ(θ)

)
= 0. (4)

Namely the interface energy in the governing equation
within the missing orientations is changed using that of the
interface at the end of the stable orientations and the model
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successfully reproduces the equilibrium shape and the transient
growth toward the equilibrium shape of a facet interface.
Debierre et al. [5] have proposed a different type of anisotropic
interface energy in their phase-field approach as

σ(θ) = σ0(1 + ν(| sin θ| + | cos θ|)). (5)

To avoid discontinuities of the derivatives at the cusps in
the interface energy plot, they regularized the interface energy
within the orientations near the cusps with sinusoidal functions
and performed phase-field simulations of facet dendrite growth
with vanishing interface kinetics. Kasajima et al. [7,8] have car-
ried out phase-field simulations of the facet free dendrite growth
of silicon using the interface energy model by Eggleston et al.
and thin interface limit parameters. Their results are similar to
those by Debierre et al. [5] in spite of the different treatment of
unstable interfaces. The similarities between the two approaches
are that a facet dendrite is composed of a tip with stable interfaces
and a trailing tail with unstable interfaces and that the charac-
teristic size of the tip LT is related to the growth velocity V with
a scaling law of LT ∝ V0.5. This indicates that both approaches
by Eggleston et al. and by Debierre et al. can be applicable to
real systems with facet crystals such as silicon.

However, the direct comparison of simulations with experi-
ments is still difficult. Because of the small capillarity length of
silicon, the interface width in the phase-field simulations should
be sufficiently small so as to obtain the correct values of den-
drite growth velocity, and therefore the range of undercooling in
simulations is higher than that in experiments. In addition, the
dendrite growth observed in experiments is three-dimensional
[9–14], but three-dimensional phase-field simulations are still
impractical. These difficulties are markedly reduced when the
experimental data on the two-dimensional facet dendrite growth
are provided. The experiments for alloy systems are also useful
as the reference data for comparison because the solute diffusiv-
ity is much smaller than the thermal diffusivity and the computa-
tional limitations are relaxed to some extent. Two-dimensional
experiments on dendrite growth are generally difficult to per-
form but the present authors found a way of fabricating a thin
film of molten silicon or silicon alloys in a simple manner. Using
this technique, Kuniyoshi has measured the growth velocity of
dendrites in an undercooled liquid film of Si–6 wt.% Ni alloy
[15]. The dendrite growth in a thin liquid film is not strictly two-
dimensional, however, this data is comparable with simulations.

In the present study, the two-dimensional phase-field model
for the facet crystal growth of a dilute alloy is presented and
the dendrite growth of silicon from the undercooled melt of
silicon–nickel alloys is simulated using the model. Finally the
result of the simulations is compared with the data on the den-
drite growth in a thin liquid film and the validity of the model is
discussed.

2. Calculations

In the present two-dimensional phase-field model, the inter-
face energy with the fourfold symmetric anisotropy of Eq. (1)
is assumed and the anisotropy of interface kinetics is taken into

account in association with the anisotropy of interface energy
so as to have the same orientation dependence as the interface
energy

β(θ) = 1

μ(θ)
= β0(1 + νK cos 4θ), (6)

where μ(θ) and νK are the angle-dependent linear kinetic coeffi-
cient and its anisotropy, respectively. The phase-field φ is defined
as zero at liquid and unity at solid, and it varies continuously
from zero to unity in the interface region. The phase-field equa-
tion within stable orientations is given by

1

M

∂φ

∂t
= ε2∇2φ + εε′{(φyy − φxx) sin 2θ + 2φxy cos 2θ}

− 1

2
(ε′2 + εε′′){2φxy sin 2θ − ∇2φ

− (φyy − φxx) cos 2θ} − fφ. (7a)

Using the modified interface energy by Eggleston et al., the
phase-field equation within missing orientations is given by

1

M

∂φ

∂t
=

(
ε(θm)

cos θm

)2

φxx − fφ, (7b)

where M, ε, and W are phase-field parameters, and the subscripts
underφ1 and f denote the partial derivatives. Here, the orientation
with the largest interface energy is taken to be the x-axis and the
numerical calculation is carried out for one quadrant. Note that
the orientation continuity at the edge is guaranteed by taking the
average of edge orientations at adjacent points. The free energy
density f, solid fraction h(φ), and parabolic potential g(φ) are
defined as

f = h(φ)f S + (1 − h(φ))f L + Wg(φ), (8)

h(φ) = φ3(3 − 2φ),

and

g(φ) = φ(1 − φ).

The equation for solute diffusion is obtained using the free
energy density,

∂c

∂t
= ∇ D(φ)

fcc

∇fc, (9)

where D is the diffusion coefficient. By assuming a dilute solu-
tion, the terms on the right-hand side of the equation are simpli-
fied as

∇fc = ∇fcL = RT

Vm
∇ ln

cL

1 − cL
(10a)

fcc = fcLcLfcScS

(1 − h(φ))fcScS + h(φ)fcLcL

(10b)

fcici = RT

Vm

1

ci(1 − ci)
(i = S, L), (10c)

where cL and cS are the solute contents in the solid and liquid
phases, R is the gas constant, and Vm is the molar volume. Note
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