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Abstract

In this paper, the deformation behavior of an aluminum matrix composite with different volume fractions of particle reinforcement was investigated
during laser forming by a microstructure-integrated finite element method. A modified self-consistent analytical model was developed to obtain the
relationship between the mechanical properties of the composite and its matrix material. Different from Duva’s model, the present analytical model
assumed that the matrix material and the composite follow the same Ramberg–Osgood type of power law but with different hardening exponents.
Based on the properties of the matrix material determined by the analytical model, the thermo-physical properties of the composite with different
volume fractions of particles were obtained by the unit cell model. A microstructure-integrated finite element method was subsequently applied to
predict the deformation behavior and the bending angle of the composite. It was found that the bending angle of the composite increased with an
increase in volume fraction of particles.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Since 1986, laser forming has emerged as a hot working pro-
cess to deform work pieces using thermal stress induced by laser
irradiation. A considerable number of experimental and numer-
ical investigations were carried out to understand the process
over the past decades. Vollertsen proposed three mechanisms,
the temperature gradient mechanism (TGM) [1], the buckling
mechanism (BM) [2] and the upsetting mechanism (UM) [3].
Based on the mechanisms, some analytical models were devel-
oped to predict the bending angles by laser forming [4–6]. In
order to broaden the applications of the technology, some irradi-
ation strategies were performed to obtain the complicated shapes
(dome or saddle) of work pieces by laser forming [7], and a con-
siderable number of materials including low or mild carbon steel
[8], ceramics [9], high strength steel [10], chromium [11] and
titanium alloy [12] were examined. Meanwhile, with the devel-
opment of the computer technology, a number of researchers
have applied numerical methods to simulate the process [13–15].
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Although laser forming has been investigated quite exten-
sively, most of the experimental and theoretical work still
focuses on monolithic alloy. Chan and Liang [16] have
experimentally demonstrated that an aluminum matrix-based
composite (Al6013) can be deformed to a large angle by laser
irradiation. Liu et al. [17] proposed an analytical model to pre-
dict the deformation of the composite. Very recently, Liu et al.
[18] have further attempted to simulate the thermo-mechanical
process by the finite element method integrated with the unit
cell model, by which the properties of a composite can be
obtained in terms of the properties of the matrix and the rein-
forcements. It shows that the deformation behavior of metal
matrix composites during laser forming is greatly affected by
the mechanical properties of their matrix materials. As it is rel-
atively difficult to obtain the true mechanical properties of a
matrix material in a composite, a substitutive approach has been
used to obtain the properties from the experimental results of
the composite through an analytical model. Quite a few ana-
lytical models [19–24] have been developed to describe the
relationship between a composite and its matrix/reinforcement.
Following the Eshelby ellipsoidal inclusion theory (1957) [19],
the analytical models such as Mori–Tanaka model [20], the self-
consistent model [21] and the differential model [22] are based
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on the medium field concepts, which assume that the stress and
strain fields in the matrix and in the reinforcement are adequately
represented by averaging the volume fraction of them in the
elastic regime, although they are different in the way that they
account for the elastic interaction between the phases. The mod-
els were then extended to plastic regime by using the tangent
[23] or secant formulations [24] to build up the relationship of
the stress and strain through the overall elasto-plastic deforma-
tion. Another approach developed by Christensen and Lo [25]
assumed that a kernel consisting of a spherical inclusion was
surrounded by the matrix layer, which was in turn embedded
into the effective medium. Based on the self-consistent method,
Duva introduced a model to depict the random distribution of
rigid spherical particles bonded in a power law matrix follow-
ing the same work hardening exponent as the composite [26].
Bao et al. further extended this model to study the overall limit
flow stress for composites with randomly orientated disc-like or
needle-like particles [27].

In this paper, a modified self-consistent analytical model with
consideration of the different work hardening behavior of the
matrix and the composite is proposed to represent the relation-
ship between the mechanical properties of the composite and
its matrix. Based on the predicted properties of the matrix, the
thermo-mechanical properties of the aluminum matrix compos-
ite will be predicted by the unit cell model. They will then be
used to simulate the deformation behavior of a MMC with dif-
ferent volume fractions of reinforcement during laser forming
by a microstructure-integrated finite element method.

2. Analytical model

In the analytical model, the matrix material is assumed to
be incompressible. The inclusions behave elastically in all load-
ing conditions and their stiffness is much higher than that of the
matrix so that the inclusion can be regarded as being rigid. Dam-
ages of the composite including porosity, reinforcement fracture,
interface debonding and matrix cracking are not accounted for
in the present model. The stress and strain relationship of the
composite is assumed to follow the Ramberg–Osgood type of
power law:

εc = σc

Ec
+ αε0

(
σc

σr

)N

(1)

where N̄ = 1/n̄, σc and εc the uniaxial stress and strain of the
composite, respectively, Ec the Young’s modulus of the com-
posite, the coefficient α is taken to be 3/7 by Ramberg and
Osgood, and ε0 is the yield strain of material. σr is the asymp-
totic reference stress, which will converge to a constant with
sufficiently large strain. When the deformation approaches the
elastic-perfectly plastic law with n̄ → 0, then

lim
n→0

σr = σc0 (2)

where σc0 is the limit flow stress of the composite.
Duva’s differential self-consistent model [26] for the ref-

erence stress of the composite with rigid spherical particles

perfectly bonded in a pure power law matrix gives

σr = σ0(1 − Vp)−m (3)

where m ∼= 0.39(1 − n) + 2.5n, Vp the volume fraction of rein-
forcement, and σ0 is the tensile flow stress of matrix.

The stress–strain relationship for the matrix material consid-
ered in the paper is rate independent and specified by quasi-state
behavior. Based on Mori–Tanaka’s average field model (1973)
[20], the bulk modulus of the matrix is determined by the fol-
lowing relationship:

Kc = Km + (Kp − Km)Vp

1 + (1 − Vp)[(Kp − Km)/(Km + (4/3)Gm)]
(4)

where Gm is the shear modulus, which gives

Gm = 3(1 − 2νm)

2(1 + νm)
Km (5)

where vm is the Poisson’s ratio of the matrix, and Kc, Km, Kp
stand for the bulk modulus of the composite, matrix and particle,
respectively, which are formulated as

Ki = Ei

3(1 − 2νi)
(6)

where Ei and vi (i = c, m, p) stand for the elastic modulus and
Poisson’s ratio of the composite and its components (matrix and
inclusion).

The uniaxial work hardening behavior of the matrix is also
described by the power law equation:

εp = k

(
σ

σ0

)N0

(7)

where σ is the uniaxial stress of the matrix, εp the plastic strain
of the matrix, k the material constant, and n0 = 1/N0 is the strain-
hardening exponent of the matrix. Following the Duva’s model
[26,28], a composite with hard inclusions will harden with the
same strain-hardening exponent as the matrix when the strains
are in the fully developed plastic regime. While in real materials,
the addition of inclusions will affect the deformation behavior
of the monolithic matrix. Therefore, in the present model, the
relationship between the strain-hardening exponent of the matrix
and the composite is assumed to be represented by the following
equation:

n̄ = βn0 (8)

where n̄ stands for the hardening exponent of the composite, and
β is a coefficient. Substituting Eq. (8) into Eq. (7) and using Eqs.
(1)–(6), the mechanical properties of the matrix can be obtained.

3. Finite element model for laser forming

The finite element simulation was conducted using the
ANSYS commercial software. The flow chart of the simula-
tion process is shown in Fig. 1, which includes four models, the
self-consistent analytical model, the unit cell model, the tem-
perature field (or thermal analysis) model and the structural
field (mechanical analysis) model. The mechanical properties
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