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Topological hysteresis as a model for Rayleigh damping
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Abstract

To account for the large magnetomechanical damping of demagnetized specimens, we propose as a model Landau’s arrangement of magnetic
domains with no overall magnetic moment. To analyze the model, we use the nature of magnetostriction to transform the data from internal friction,
Q−1, and strain amplitude, ε, into energy loss and volume fraction reoriented by stress, both as functions of ε. The large peak in Q−1(ε) above
the upper end of the Rayleigh range is attributed to the onset of gross changes in the domain structure, the Rayleigh range to dynamics of closure
domains on a finer scale, and the lower end of the range to the wall displacements becoming of the order of one atomic distance.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetomechanical damping (MMD) has marked parallels
with magnetic hysteresis (MH) suggesting that the mechanisms
are essentially the same, that the damping is a form of ferromag-
netic hysteresis [1–3]. However, neither has been satisfactorily
explained in terms of the domain model of ferromagnetism. The-
ories based on the motion of a domain wall through a statistical
distribution of obstacles have been summarized recently [4,5].
We follow Molho et al. [6] in turning instead to topological hys-
teresis because it presupposes only the presence of domains in a
ferromagnetic material. In this paper we focus on the Rayleigh
range of hysteresis in bulk, polycrystalline specimens of iron
and its relatively dilute alloys, but the model we develop should
have broader applicability.

From the experiments on MMD in ferrous materials, we select
three noteworthy points: (i) the damping, Q−1, measured in the
Rayleigh range of strain amplitude ε (10−6 < ε< 10−4) is largest,
broadly speaking, when the overall magnetic moment M ≈ 0;
(ii) for well-demagnetized specimens the oscillatory flux during
vibrations is very small, so dM/dt = (dM/dσ)(dσ/dt) ≈ 0, where
t is the time and σ is the stress; (iii) Q−1 is largest when the
composition is such that there is no � phase at high tempera-
ture, permitting annealing at higher temperatures. Point (i) is
supported by all the evidence such as [7]. Point (ii) emerges
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from the data of Coronel et al. [8], who observed a vibrating
flux density with amplitudes as low as 1.5 × 10−8 T. Point (iii)
appears from the data of Smith and Birchak (SB), summarized
in [9], on the Rayleigh slope, θR = dQ−1/dε, of Fe–Si and Fe–Ge
alloys. SB, who actually report values of ψ = 2πQ−1, find val-
ues of θR about 2400 for iron with 2.35% Si and 3.1% Si after
annealing at 1200 ◦C, compared with values as low as 35 for the
latter annealed at 750 ◦C, and 25 found by [7] for Armco iron
annealed at 700 ◦C.

We need then a model for MMD that will give large damping
in a demagnetized specimen, the damping to arise from domain
walls which move in such a way that little net magnetic moment
is generated during the vibrations, implying that the motion of
the walls must be fairly strongly correlated.

2. The model: a Landau block

Perhaps the simplest of candidates [10] is Landau’s arrange-
ment of a group, a block, of domains in a rectangular solid with
M = 0, as shown in Fig. 1. For each boundary in Fig. 1, the com-
ponent of magnetization I normal to the boundary is continuous
across the boundary and no poles are formed (�·I = 0). Fig. 1
is suitable for a cubic material with positive anisotropy such
as iron, with the crystalline axes aligned with the coordinate
axes; for simplicity, we will follow this case. In the absence of
a field the magnetization I lies along a <1 0 0> direction. Two
of many possible arrangements are shown in Fig. 1(a) and (b),
with differing numbers N, each satisfying (i). Because of mag-
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Fig. 1. Two versions of a Landau block, with domain walls seen edge on as
traces. The long domains with pointed ends, in which the magnetization I points
alternately up or down (±y-axis), are separated by 180◦ walls with traces along
the y-axis. There are also closure domains, triangles with I pointing alternately
right and left (±x-axis), separated from the long domains by 90◦ walls. The 90◦
walls always meet the outer boundary at an angle of 45◦, and each other at 90◦
at the triple junctions with the 180◦ walls. Magnetostrictive strain is omitted in
this description.

netostriction, an applied stress may exert a force on a 90◦ wall,
but never on a 180◦ wall. Nevertheless, because of the need to
preserve �·I = 0 in the vicinity of the walls, especially near the
triple junctions, we envision that all the domain walls, both 90◦
and 180◦ walls, move together in response to a stress. Such a
motion involves states with non-integer N. However, if the angles
between the walls remain constant, the pattern can still change
by changing its scale in such a way that deviations from the pat-
tern occur only at the edges where closure domains on a finer
scale may appear and give rise to a small, transitory M(t), thus
(possibly) satisfying (ii). In that case the motion of the walls is
indeed highly correlated. Using this geometric model, together
with the general principles of internal friction and the special
assumption that the Rayleigh law holds, we can produce some
useful estimates concerning the motion of the network of walls
in a Landau block.

In Fig. 1 we see a cross-section through a structure that does
not vary in the third direction, so the areas seen are in propor-
tion to the volumes of the domains; the area fraction of closure
domains in the plane is equal to their volume fraction. The block,

a rectangular solid of dimensions L1, L2, L3, is mostly taken up
by domains with magnetization I along the ±y-axis having the
shape of pointed rectangles. From tip to tip the long domains
measure L2, but their width, D, is variable. The closure domains
each have a base of D and an altitude of D/2. The structures
shown are characterized by an integer, N = L1/D, the number of
closure domains at one end, equal to the number of 180◦ walls.

In analyzing the structure of Fig. 1, we must consider both
the areas in the plane of the figure, Al of the long domains and
Ac of the closure domains, which represent the content of the
domains, and also the areas of the walls, A90 and A180, which
are given by lengths in Fig. 1 multiplied by their extension in
the perpendicular direction L3. The length of the zigzag border
of the closure domains at one end of the block is just

√
2L1,

while the height of any of the closure triangles is D/2. The total
area of the closure domains, taking account of both ends, is just
Ac = DL1/2 = L2

1/(2N), and so Al = L1L2 − Ac = L1L2 −
L2

1/(2N). The areas of the walls are A180 = N(L2 − D)L3 and
A90 = 2

√
2L1L3. The total domain wall energy of the block is

then

Edw = E90 + E180 = γ90A90 + γ180A180

= (2
√

2γ90 − γ180)L1L3 + γ180NL2L3, (1)

ΔEdw = γ180L2L3	N, (2)

where γ90 and γ180 are the surface energies of the correspond-
ing domain walls. It is striking that while the mechanical force
is exerted on the 90◦ walls, the resulting changes of energy are
stored in the 180◦ walls; in this model the usual neglect of inter-
actions between the two kinds of wall is seen to miss the essence.

The magnetostrictive strain has a constant magnitude λ, more
precisely λ100, but may extend along any <1 0 0> direction.
When there are only two <1 0 0> axes to consider, we may
express this strain in terms of the volume fraction f of the closure
domains. The average strains in the block of Fig. 1 are

ε11 = λf, ε22 = λ(1 − f ), all other εij = 0. (3)

This result depends only on the restriction to two domain
orientations and not on which particular Landau array is under
consideration.

The volume fractions being equal to the area fractions, we
have

f = Ac

L1L2
= D

2L2
= L1

2NL2
, 	f = 	D

2L2
. (4)

The work done on the block by a stress σ11 acting on a change
of strain, 	ε11, is

	Wσ = L1L2L3σ11	ε11 = L1L2L3σ11λ	f, (5)

where a positive	ε11 corresponds to an increase in D and in the
volume of the closure domains, and so to a decrease in N. The
work done to bring about a change in the domain configuration of
the specimen is assumed to be lost from the driving mechanical
system and so to be part of the magnetomechanical damping.
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