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A lattice Boltzmann model of statistical evolution of microvoids
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Abstract

A lattice Boltzmann model is proposed for the simulation of the statistical evolution of numerous microvoids under high stress triaxiality
subjected to dynamic loadings. It considers the size distribution of microvoids during ductile fracture based on the balance law of microvoids’
number. A series of lattice Boltzmann equations governing the statistical evolution of microvoids are derived by using distribution function and
multi-scale technique. Numerical results show that after a given time of evolution, microvoids in rate-sensitive materials are small and compact,
whereas microvoids in rate-insensitive materials appear to be big and sparse, and the porosity in rate-insensitive material increases faster than that
in rate-sensitive material. These numerical results might put insight into the mechanism of ductile fracture.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the fracture process of materials is crucial to
the development of new materials with high strength and tough-
ness. Cracks and dislocations are the two major defects deter-
mining these mechanical properties in metals. Ductile fracture
of metals may result from nucleation, growth and coalescence of
microvoids. There are millions of microvoids within a material
element during the fracture processes. It is certainly a formidable
task to deal with each one of these voids individually, and in most
cases is unnecessary. The existence of numerous microvoids
makes it possible to describe their behavior in a statistical aver-
age sense. Curran et al. [1] proposed the model to describe the
statistical evolution of microscopic cracks or voids on the basis
of experimental observations. Xing [2,3] gave a set of equations
governing the statistical evolution of microcracks based on the
balance law of microcracks’ number and the dislocation mech-
anism of plastic deformation. Based on the expression for void
growth rate and the balance law of microvoids’ number, Li and
Huang [4] investigated the statistical evolution of microvoids
under high stress triaxiality. Bai et al. [5] studied the statistical
evolution of ideal microcracks system. Due to their complexity,
it is worth seeking a new approach to further study on statistical
evolution of microvoids.
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Recently the lattice Boltzmann method (LBM) has been
developed as an alternative method for computational fluid
dynamics (CFD). This method originated from a Boolean fluid
model known as the lattice gas automata (LGA) that simu-
lates the motion of the fluids by particles moving and colliding
on a regular lattice. Although these particles are more meso-
scopic than truly microscopic, the level of description used in
LBM is closer to physical reality than the standard numerical
schemes of CFD. The kinetic nature brings certain advantages
over conventional numerical methods, such as their algorithmic
simplicity, flexibility, intrinsic parallelism and simple meshes.
During the past few years much progress has been made that
extend the LBM becoming a tool for simulating many complex
fluid dynamics problems that are quite difficult to simulate by
conventional methods [6–11]. A recent study showed that the
LBM could be further used to simulate other kinetic equation
besides CFD [12].

The statistical evolution of numerous microvoids under high
stress triaxiality subjected to dynamic loadings will be inves-
tigated by LBM in this paper. We propose a simple LBM
model for simulation of the size distribution of microvoids and
the porosity effect of strain rate-sensitivity in materials based
on the balance law of microcracks’ number. A series of lat-
tice Boltzmann equations governing the statistical evolution
of microvoids are derived by using distribution function and
multi-scale technique. The evolution curves of the number den-
sity of microvoids in materials are calculated and compared
with each other. The numerical experiments could lead to an
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improved understanding of microscopic mechanism of fracture
process.

2. The equations of microvoid evolution

2.1. Basic definitions

Given the different effects induced by external stress, temper-
ature, etc., the fractures of solid materials include brittle fracture,
fatigue, delayed fracture and environmental fracture. The basic
concepts of non-equilibrium statistical mechanics in the descrip-
tion of material fracture by the non-equilibrium statistical theory
and the evolution of microscopic cracks or voids can be gener-
alized as the following [2]:

(i) The fracture is a non-equilibrium irreversible dynamic pro-
cess. It is determined by the nucleation, growth and coales-
cence of the microscopic voids.

(ii) The fracture processes consist of two states, one is the nucle-
ation and growth of numerous microvoids, the other is the
propagation of the single main crack.

(iii) The nucleation and growth of the microvoids are based on
dislocation, migration and their interaction microscopically.

(iv) The evolution of the microvoids is stochastic and undeter-
mined, thus its principle is statistical.

(v) The macroscopic mechanical factors describing the fracture
should be ensemble statistical average.

2.2. Evolution equations

The internal and surface microvoids grow under external
force. The microscopic structure can be seen as a series of dis-
continuous fluctuation on the background of the mean structure
for the microscopic cracks of the matrix and the discontinuity of
the phase structure. Suppose t is the time of loading, r is the size
of microcracks or the radius of microvoids, ṙ is the growth rate
of microvoids, according to general law of Langevin, we have

ṙ = K(r) + F (r, t) = K(r) + β(r)f (t) (1)

where K(r) is migration growth rate, which is determined by
the background of mean structure of the matrix and the external
force; F(r,t) determined by the discontinuous fluctuation of the
matrix and the external force; f(t) the fluctuation function; β(r) is
the fluctuation coefficient of amplification. Suppose f(t) satisfies
Gaussian distribution, we have

< f (t) >= 0, < f (t)f (t′) >= Qδ(t − t′) (2)

where Q is the fluctuation coefficient, and δ is the Dirac function.
Suppose M(r,t) dr is the number of microvoids with size

between r and r + dr per unit volume at time t. The growth
rate of M is attributed to the migration growth rate, fluctuation
growth rate and the nucleation rate. Based on the balance law of
microvoids’ number and dynamics of microvoids, the differen-
tial equation that governs the evolution process can be written

as [2]:
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+ Q
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∂r2 [β2(r)M(r, t)] + q(t)δ(r − r0) (3)

where q(t) is the nucleation rate per unit volume at t.
When the fluctuation is ignored, the evolution equation of

microvoids’ number density may be expressed as

∂M(r, t)

∂t
= − ∂

∂r
[K(r)M(r)] + q(t)δ(r − r0) (4)

Because of the time reversal asymmetry of Eqs. (3) and
(4) above, the irreversibility of the evolution of microvoids is
revealed.

The initial condition and the boundary condition, respec-
tively, can be written as

M(r, t = 0) = 0, M(r → ∞, t) = 0 (5)

Eq. (5) means all the microvoids or microcracks are produced
by the external force, and there are no unlimited cracks before
the matrix is broken.

Based on the knowledge of growth and nucleation of
microvoids, the Griffith critical size or radius of microvoids is

ck = γE

π(1 − ν2)σ2 (6)

where σ denotes the vertical stress imposed on the microvoid, γ
the surface energy, E the Young modulus and ν is the Poisson’s
ratio.

The case of high stress triaxiality is studied in the paper.
Suppose macroscopic mean stress applied on material element
increases suddenly from zero to Σm at time t = 0, and keeps
constantly afterwards. The effect of the nucleation rate will not
appear on the right-hand side of Eq. (4) because the size of
nucleating voids ck is always smaller than that of growing voids
r in the high stress triaxiality in which the density of nucleating
voids will be small. Hence, the evolution equation of microvoids’
number density can be rewritten as [4]:

∂M(r, t)

∂t
+ ∂(ṙM(r, t))

∂r
= 0, [ṙM(r, t)]r=ck

= q(t),

M(∞, t) = 0, M(r, 0) = 0, (r > ck) (7)

where second part of Eq. (7) is based on the following fact that
the nucleating voids are equivalent to voids which grow from
r ≤ ck to r > ck, and the nucleation rate q(t) can be taken approx-
imately as a constant value q under constant temperature and
macroscopic stress.

The growth rate of microvoids under spherically symmetric
loading condition is [4]:

ṙ = G(Σm, p)ε̇0r (8)

where

G(Σm, p) = 1

2

[
3m

2
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(9)
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