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On the nonlinear elastic properties of textile reinforced concrete
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Mike Richter ∗, Bernd W. Zastrau
Institute of Mechanics and Shell Structures, Faculty of Civil Engineering, Technische Universität Dresden, D-01062 Dresden, Germany

Received 4 August 2005; received in revised form 7 February 2006; accepted 9 February 2006

Abstract

This paper is focussed on the description of the macroscopic nonlinear elastic material behaviour of textile reinforced concrete (TRC) using
an analytical approach. Damage and cracking of the composite are considered as well. The heterogeneous structure of TRC is modelled on the
mesoscopic level and the overall material behaviour on the macroscopic level is obtained by means of homogenisation. The analytical approach is
based on the micro-mechanical solution for a single inclusion according to Eshelby. In extension of this solution for multi-directionally reinforced
concrete an effective field approximation is used. This approach allows the consideration of the interactions between the differently orientated
rovings and also between rovings and micro-cracks in an average sense. The micro-cracks are included in the mechanical model by using a micro-
crack density parameter. For the mechanical modelling of the bond behaviour between roving and matrix after the initiation of macro-cracking a
slip-based bond model with a multiple linear shear stress–slip relation is introduced.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Textile reinforced concrete (TRC) is a composite of a so-
called fine grained concrete matrix and a textile reinforcement
which is used in the field of civil engineering for the fabrication
of new structural elements and the strengthening of existing con-
structions [2]. The textile reinforcement consists of rovings. A
roving is a bundle of a huge number of continuous filaments.
The failure mechanisms of TRC are very complex. Most im-
portant are matrix-cracking, debonding of the roving from the
matrix and breaking of the filaments and rovings [9]. The macro-
scopic material behaviour can be classified into a linear elastic
part for low loadings, micro-cracking and macro-cracking. The
final failure of the composite occurs due to the breaking of the
rovings.

For the numerical simulation of textile reinforced structures
the concept of representative volume elements (RVE) is mean-
ingful. Therefore, the heterogeneous structure of TRC is anal-
ysed on the mesoscopic level and the macroscopic material be-
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haviour, characterized by the overall elasticity tensor C̄, is ob-
tained by the process of homogenisation. In addition to the appli-
cation of numerical methods the RVE can be treated analytically
under consideration of appropriate mechanical assumptions. In
this paper analytical approaches are discussed. One advantage
of the analytical approach is the determination of the overall
macroscopic response of a RVE due to the macroscopic loading
without high numerical costs.

The overall elasticity tensor C̄ is defined by the average stress
σ̄ and the average strain ε̄. In the following the macroscopic
strain ε0 is prescribed. This strain must be equal to the average
strain. Therewith the macroscopic constitutive relation can be
written as

σ̄ = C̄ : ε̄ = C̄ : ε0. (1)

The aim is the determination of C̄ which shall be demon-
strated in the following. The determined overall elasticity tensor
C̄ can be used for integrated multi-scale analyses which do not
demand for a constitutive relation of the nonlinear elastic or in-
elastic material behaviour on the macroscopic level. For a given
macroscopic state of strain the mesoscopic mechanical model
of the heterogeneous RVE is solved directly.
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2. Linear elastic behaviour

For a low macroscopic loading the material behaviour is lin-
ear elastic. An RVE containing a homogeneous elastic matrix
and n elastic inclusions �α is assumed. On the boundary ∂V

of the RVE the linear displacement field u0 = x · ε0, associated
with the constant symmetric macroscopic strain ε0, is prescribed.
The definition of the overall elasticity tensor C̄ in Eq. (1) leads
with the volume averaging of the stresses and strains over the
RVE:

σ̄ = fmσ̄m +
n∑

α=1

fασ̄α and ε̄ = ε0 = fmε̄m +
n∑

α=1

fαε̄α,

(2)

and the local material behaviour of the inclusions and the matrix
to the relation [7]:

(C̄ − C) : ε0 =
n∑

α=1

fα(Cα − C) : ε̄α, (3)

which can be used for the determination of C̄. This result is ex-
act in the context of the given mechanical model (linear elastic
matrix and inclusions, homogeneous boundary conditions). C
is the elasticity tensor of the matrix, Cα the elasticity tensor of
the inclusion α, ε̄α the average strain in the inclusions and fα

the volume fraction of the inclusions. The problem is the deter-
mination of ε̄α, whose analytical determination is based on the
micro-mechanical solution for a single inclusion � embedded
in an unconstrained elastic matrix with the far field strain ε0 as
derived by Eshelby [3]:

ε̄� = (1 − S : (1 − D : C�))−1 : ε0, (4)

with the Eshelby tensor S and the compliance tensor of the matrix
D = C−1. 1 is the identity tensor of fourth order. Neglecting any
interactions between the inclusions (here the rovings), Eq. (3)
leads with Eq. (4) to the overall elasticity tensor C̄:

C̄ = C +
n∑

α=1

fα((Cα − C)−1 + Sα : D)−1. (5)

This solution is well known and is called the solution for
dilute distributions or simple the dilute solution.

As a first approximation Eq. (5) leads to appropriate results,
but for larger volume fractions fα of the inclusions the error
in C̄ increases. For large volume fractions of the inclusions the
assumption of the Eshelby-solution (the inclusion is situated
in an unconstrained matrix with the far field strain ε0) is not
appropriate. The approach for the average strain ε̄� (see Eq.
(4)) can be improved by the assumption that the inclusions are
surrounded by a matrix with the average matrix strain ε̄m. Now
ε̄� is given as

ε̄� = (1 − S : (1 − D : C�))−1 : ε̄m. (6)

This approach is known as the effective field approximation
(EFA) [6]. The average matrix strain ε̄m is unknown. If there
is only one type of inclusions �, the average matrix strain can
be substituted by the average strain in the inclusion ε̄� and the

prescribed macroscopic strain ε0. This problem can be solved
easily and leads to an improved solution for the overall elastic-
ity tensor for an RVE consisting of a matrix and one type of
inclusions, see e.g. [7].

In the case of a multi-directional reinforcement we have a
matrix reinforced with different rovings (e.g. different cross sec-
tions) of different orientations. The solution of this problem is
more complicated, but a closed form analytical solution for C̄
can be found as well [9]. Each different inclusion �α (here the
different rovings) is assumed to be in a matrix with the still
unknown average matrix strain ε̄m which can be substituted by
means of the volume average:

ε0 = fmε̄m +
n∑

α=1

fαε̄α. (7)

The volume fraction of the matrix fm is known by

fm +
n∑

α=1

fα = 1. (8)

With Eqs. (7) and (8) the formulation of Eq. (6) for each
individual inclusion �α (α = 1, . . . , n) leads to a system of n
equations. As shown in [9] the average strains ε̄α in the n indi-
vidual inclusions can be formulated depending on the prescribed
macroscopic strain ε0:

ε̄α =
⎧⎨
⎩Kα +

n∑
β=1,β �=α

fβ(Kβ − fβ1)−1 : (Kα − fα1)

⎫⎬
⎭

−1

: ε0,

(9)

with the fourth order tensors Kα:

Kα = (fm + fα)1 − fmSα : (1 − D : Cα). (10)

With Eq. (9), Eq. (3) leads to an equation for the direct compu-
tation of the overall elasticity tensor for a composite of a matrix
and n different inclusions �α:

C̄ = C +
n∑

α=1

fα(Cα − C) :

×
⎧⎨
⎩Kα +

n∑
β=1,β �=α

fβ(Kβ − fβ1)−1 : (Kα − fα1)

⎫⎬
⎭

−1

.

(11)

This solution leads to better results than Eq. (5), because it
considers the interactions between the different inclusions (e.g.
the differently orientated rovings) in an average sense.

As a short example the results of a homogenised bidirectional
reinforced concrete matrix shall be given. The concrete matrix
is assumed to be isotropic (Em = 30, 000 N/mm2, νm = 0.2).
The embedded roving as a loose bundle of a huge number of
continuous filaments is idealised as a cylinder with only a longi-
tudinal stiffness (Er = 76, 000 N/mm2). It acts transverse to its
axis like a hole. Fig. 1 shows the overall Young’s modulus Ē3
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