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Stochastic simulation of grain growth during continuous casting
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Av. Ticomán #600, Col. Ticomán, C.P.07340, México, Mexico
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Abstract

The evolution of microstructure is a very important topic in material science engineering because the solidification conditions of steel billets
during continuous casting process affect directly the properties of the final products. In this paper a mathematical model is described in order to
simulate the dendritic growth using data of real casting operations; here a combination of deterministic and stochastic methods was used as a
function of the solidification time of every node in order to create a reconstruction about the morphology of cast structures.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The final quality and properties of castings products depends
on the microstructure formed during solidification. The simu-
lation on grain scale is used to provide a reliable foundation
for the process control and the improvement of the casting
products so, that many authors have been developing mathe-
matical models, algorithms and simulation systems to predict it
[1–20].

In the 1960s Oldfield [1] was one of the beginners who tried
to simulate the solidification structure. In the 1980s, the Monte
Carlo method was used for modeling the nucleation and growth
of the grains. In the early 1990s, cellular automaton model was
employed in which the physical mechanism of heterogeneous
nucleation and growth was taken into account and in a similar
way deterministic methods were introduced to deal with the
distribution of the nuclei. In recent years, the phase-field model
has been developed to simulate the formation of microstructures
[2,3].

In general, there are two basic theoretical approaches to
describe the grain growth: deterministic and stochastic, the oth-
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ers ways are combination of these two. In deterministic methods,
the behavior of each grain is determined by established parame-
ters like size, number of neighboring grains and others, while the
stochastic methods were first used by Louat and then modified
by some other authors [4–7].

Deterministic approach refers explicitly to the driving force
of grain growth, which is due to the decrease in total grain bound-
ary energy. Nevertheless, this approach is standard but leads to
wrong predictions of the grain size distribution. Therefore it
is necessary to increase the state parameters and obtain better
results. On the other hand, the stochastic approach is much more
successful in predicting size distributions because this approach
can reproduce the heterogeneity of materials using random grain
sizes and populations.

A very important problem involved in grain growth simula-
tion is that the number of cells needed to simulate the microstruc-
ture of a casting is tremendous due to the scale of the grain size.
Consequently, the efficiency of a personal computer will be very
low, the reason why some authors have explored using parallel
computing techniques [3]. Nevertheless, improving the algo-
rithms to simulate accurately the phenomenon is other possible
way. It is important to remember that the number of cells is a
function of the scale used to simulate the micro- or macro-scale
phenomena, and very large array sizes require longer times to
analyze and create a good approach.
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Nomenclature

a1 chill zone size (mm)
a2 columnar zone size (mm)
a3 equiaxed zone size (mm)
d1–d4 distances from the pivoting node to billet surfaces

(mm)
nR random number
t simulation time (s)
ta time defining if a node is nucleated or growth
t1 time defining limit of chill zone (s)
t2 time defining limit of the columnar zone (s)
tI,J pivoting node
tliq,I,J time for which liquid state of the pivoting node

exists (s)
tmushy,I,J time for which mushy state of the pivoting node

exists (s)
tsol,I,J final point of solidification of the pivoting node

(s)
tx,y neighbor of the pivoting node
Xsol,I,J solid fraction in pivoting node (%)
x,y positions of the neighbors of the pivoting node

2. Nucleation and growth model

The first step to develop a model to describe the grain growth
process is to understand the phenomena physically involved in
it.

When a liquid metal is quenched, the nucleation and growth
process will appear. The atoms in the domain are moving in
liquid conditions, but they form clusters as their temperature
decreases below liquidus. When the cluster grows to a certain
size it becomes a crystalline nucleus, and this process is called
nucleation.

When a nucleation point has been established, one or more
of the nearest neighbors may tend to join with it; this process is
called grain growth.

The solidification grain structure of a cross-section of an ingot
shown in Fig. 1. It was described by Flemings [8]. Here three dif-
ferent zones can be identified, one of them is the outer zone also
called chill zone, it comprises of fine grains with random ori-
entation. The second, an intermediate zone is a columnar zone,
with many elongated and oriented grains from the billet surfaces
to the centre. Finally, there is a central equiaxed zone compris-
ing of less randomly oriented grains. Steel solidification during
continuous casting is dendritic. Each grain contains one dendrite
with a main arm and many secondary arms.

Feng et al. [3] and Lan et al. [9] used a cellular automaton
model to describe the microstructure of some alloys based on
a very similar equation for drawing the profile of a dendrite.
To predict its evolution in a micro-scale they used Eqs. (1) and
(2) to describe the geometry adopted by the nucleated points,
where θ and β are the polar angles of the dendrite, a = 1.25
a constant and L and η are the average dendrite radii. These
authors show the evolution of the dendrite shape in a liquid pool;

Fig. 1. Sketch of ingot grain structure showing chill, columnar and equiaxed
zones [1].

after nucleation, the dendrite was considered to grow along four
directions (branches at 90◦) and finally tend to adopt a square
shape. The result is a group of randomly oriented grains that
grow until their borders make contact.

L(θ) = L0[1 + (a − 1) cos 4θ] (1)

η = 1 + γ cos 4β (2)

Other authors have been developing models to create one
in combination with some phenomena like recrystallization
[7,10–12], but a very important point is the necessity for pro-
gramming a micro-scale model without losing the macro-scale
viewpoint. In recent years, many models have been developed
[13–20] to simulate grain growth but no one has joined the cal-
culation of a thermal behavior and the solidification times as a
base to build a probable structure of the cast products using real
operating conditions.

3. Mathematical model

The mathematical model used solves the equations for heat
transfer involved during the continuous casting process; firstly,
the steel is discretizated using a regular square grid that repre-
sents volumes of liquid steel. Heat removal is calculated accord-
ing to the mechanism of the steel position along the cast machine.

For the billet surface different border conditions were defined
to calculate heat removal.

In the mold, heat removal is calculated using Eq. (3)

q = A0 + B0
√

t (3)

where the values for the coefficients A0 and B0 are 2680 and
335, respectively, as obtained by Savage and Pritchard [21].
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