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Abstract

Periodic forcing may improve bioreactor performances with respect to stationary operating conditions. An analytical procedure based on the
so-called �-criterion was used by Parulekar [(1998). Analysis of forced periodic operations of continuous bioprocesses—single input variations.
Chemical Engineering Science, 53(14), 2481–2502] to assess whether periodic forcing is beneficial, and, when this is the case, the criterion
also gives an indication of the optimal forcing frequency. Such procedure is exact only in the limit of infinitesimal amplitude of the periodic
forcing. In this work the applicability of the �-criterion to nonlinear models is investigated. The analysis is carried out by comparing the
analytical predictions of the criterion with numerical predictions obtained with a continuation/optimization algorithm. As an example, two
different reaction schemes are considered. The continuation/optimization procedure gives information on optimal forcing frequency and also
on optimal forcing amplitude.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of periodically forced reactors has been widely
addressed in the recent literature. The research is mainly aimed
at assessing whether process performances could be improved
by periodic forcing. Different forcing strategies have been de-
veloped: input variables are forced to vary in time; the reac-
tor is forced by discontinuously inverting the flow direction;
periodic forcing of reactor networks is obtained by cyclic per-
mutation of the reactor order. The scientific interest was first
focused to the characterization of fixed bed reactors operated
with a periodical change of feed temperature and composition
(e.g., Briggs et al., 1977). Reverse flow reactors proved useful
in several heterogeneously catalyzed reactions (e.g., Matros,
1985; Matros and Bunimovich, 1996). Reactor networks with
switched feed position were suggested as a possible alternative
to reverse flow reactors (Haynes et al., 1992).
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In this work, we are mainly interested in the determination of
possible improvement in performance of continuous processes
via periodic forcing of one process input. To this end, an oft-
used approach is based on the so-called �-criterion (Abulesz
and Lyberatos, 1987, 1989; Bittanti et al., 1973; Guardabassi
et al., 1974; Parulekar, 1998, 2000, 2001, 2003; Sterman and
Ydstie 1990a, 1990b; Watanabe et al., 1981). This criterion is
an analytical tool valid for linear systems to ascertain whether
periodic forcing of input variables may lead to performance im-
provements. It provides a sufficient (but not necessary) condi-
tion for this. In addition, the �-criterion also suggests the most
favourable forcing frequency.

Parulekar (1998) thoroughly analyzed the performance of
continuous stirred tank bioreactors (CSTBR) applying the �-
criterion to an ample variety of kinetic schemes. That paper
was a systematic analysis of the impact of forcing on biochem-
ical processes. Parulekar pointed out that in order to apply the
criterion to nonlinear systems the input variables should be
subjected to small-amplitude forcing. As forcing amplitude in-
creases, nonlinearities set in and the outcomes of the �-criterion
may be in principle questionable.
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A possible check on the validity of the �-criterion can be
carried out by numerically analyzing the dynamic model. In
this paper, we compare the results of the �-criterion for non-
linear kinetic schemes in CSTBR with those obtained with a
numerical procedure based on a continuation/optimization algo-
rithm. Of course, any numerical optimization algorithm can be
adopted, we have chosen a continuation/optimization scheme
as it is able to reconstruct the locus of optimal conditions as
more parameter values are varied, automatically providing in-
formation on the optimal solution stability.

Parameter continuation is a typical tool to characterize bi-
furcations of nonlinear dynamical systems. It can be applied
in optimization problems as the optimal conditions can be re-
garded as a critical point. Thus, when a maximum of an objec-
tive function is available, the parameter continuation algorithm
automatically reconstructs the locus of optimal conditions as
one or more parameters are varied with continuity. It so appears
that this tool can be very useful in determining the loci of op-
timal conditions of frequency and amplitude of the forcing as
one model parameter is varied. The continuation software here
used is AUTO (Doedel et al., 1997).

For the sake of comparison, we have applied such a technique
to study two cases of those examined by Parulekar (1998),
namely the processes for the production of propionic acid with
Propionibacterium shermanii and for the production of ethanol
from glucose with Saccharomyces cerevisiae.

2. CSTBR model and kinetic schemes

The dynamics of the CSTBRs can be described within the
assumptions of unstructured and unsegregated conditions by
the mass balance equations for the biomass X, the substrate S
and the product P

dX

dt
= r1 − DX, r1 = �X,

dS

dt
= D(SF − S) − r2, r2 = �X,

dP

dt
= r3 − DP, r3 = �X. (1)

In Eqs. (1), t is time, D is the so-called dilution rate, that is
the reciprocal of the residence time; SF is the substrate concen-
tration of the feed; r1 is the kinetic rate for growth of biomass;
r2 is the rate of consumption for the substrate, and r3 is the
kinetic rate for the formation of product. The parameters �, �,
and � are kinetic functions. Several expressions for these three
rates are available in the literature. We here analyze the features
of two kinetics already studied by Parulekar (1998). The first
one is the kinetic scheme proposed by Ruan and Chen (1996)
for the production of propionic acid with Propionibacterium
shermanii

� = �mS

KS + S + S2/Ki

(
1 − P

Pm

)n

,

� = a�,

� = �� + �. (2)

In Eqs. (2) �m = 0.48 h−1, Pm = 50 g/l, KS = 1.2 g/l, Ki =
22 g/l, a = 2.5, � = 2.2, � = 0.2 h−1, and n = 1 are kinetic
parameters as given by Parulekar (1998), and their values have
been kept constant. In the following, this kinetic scheme is
referred as RC.

The second scheme is due to Aiba and Shoda (Aiba et al.,
1968; Aiba and Shoda, 1969) and applies to the production of
ethanol from glucose with Saccharomyces cerevisiae

� = �mS

(KS1 + S)
e−�1P ,

� = a�,

� = �mS

(KS2 + S)
e−�1P . (3)

In Eqs. (3), �m = 0.408 h−1, KS1 = 0.22 g/l, �1 = 0.028 l/g,
a =10, �m =1.0 h−1, KS2 =0.44 g/l, �1 =0.015 l/g are kinetic
parameters, the chosen constant values are, again, those given
by Parulekar (1998). In the following, this kinetic scheme is
referred as AS.

In the present paper, the forcing is imposed by modulating
the substrate feed concentration. When an input is periodically
forced, the dynamical system (1) can be formally written in the
following form:

dx
dt

= F(x, �, u, t). (4)

In Eq. (4), x is the vector of the state variables (i.e., x =
[X, S, P ], x ∈ R3), F is the periodic vector field, � is the vector
grouping constant parameters, and u is the vector containing
the parameters which fix the periodic input. Vector u can be
considered as the manipulable input variable. The values of
these parameters have to be chosen so as to optimize some
objective function. Note that Eq. (4) can be used for unforced
conditions as well, in that case F does not depend on u, and is
not an explicit function of time.

We are interested in determining whether periodic forcing
could improve some reactor performance. In such a case, the
optimal periodic forcing conditions (i.e., u-values) have to be
determined. For the sake of simplicity, we consider that the op-
timal conditions are those maximizing the reactor productivity.
In the case of unforced reactor, and assuming that the stable so-
lution is stationary steady state regime, the objective function
JSS is

JSS = g(xss, �) = DP SS. (5)

In Eq. (5), xss represents the steady-state regime. Obviously,
xss implicitly depends on �, which may be chosen to maximize
the productivity.

The productivity under unforced conditions is then com-
pared with that obtained under periodic forcing. As already
mentioned, we limit to the case of periodic forcing of the
feed substrate concentrations, SF , with the following sinusoidal
waveform:

SF = SF0(1 + A cos �t). (6)

In passing, it should be remarked that Eq. (6) represents
a very specific waveform for the forcing, and that different
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