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a  b  s  t  r  a  c  t

Acquisition  of  three-dimensional  (3D)  spectral  data  is  nowadays  common  using  many  different  microan-
alytical  techniques.  In  order  to proceed  to the  3D  reconstruction,  data  processing  is  necessary  not  only  to
deal with  noisy  acquisitions  but  also  to segment  the  data  in  term  of  chemical  composition.  In this  article,
we  demonstrate  the  value  of multivariate  statistical  analysis  (MSA)  methods  for  this  purpose,  allowing
fast  and  reliable  results.  Using  scanning  electron  microscopy  (SEM)  and  energy-dispersive  X-ray  spec-
troscopy  (EDX)  coupled  with  a focused  ion  beam  (FIB),  a  stack  of spectrum  images  have  been  acquired
on  a sample  produced  by  laser  welding  of  a nickel–titanium  wire  and a stainless  steel wire  presenting  a
complex  microstructure.  These  data  have  been  analyzed  using  principal  component  analysis  (PCA)  and
factor rotations.  PCA  allows  to significantly  improve  the  overall  quality  of  the  data,  but  produces  abstract
components.  Here  it is shown  that  rotated  components  can  be used  without  prior  knowledge  of the
sample  to help  the  interpretation  of  the data,  obtaining  quickly  qualitative  mappings  representative  of
elements  or  compounds  found  in  the  material.  Such  abundance  maps  can  then be used  to plot  scatter  dia-
grams  and  interactively  identify  the  different  domains  in  presence  by  defining  clusters  of  voxels  having
similar  compositions.  Identified  voxels  are  advantageously  overlaid  on  secondary  electron  (SE)  images
with  higher  resolution  in  order  to refine  the segmentation.  The  3D  reconstruction  can  then  be  performed
using  available  commercial  softwares  on  the  basis  of  the provided  segmentation.  To  asses  the  quality  of
the segmentation,  the  results  have  been  compared  to an  EDX  quantification  performed  on  the same  data.

©  2013  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Over the past few years, capabilities of microanalytical instru-
ments have largely improved. Three-dimensional microanalysis
has been recently extended to various techniques at different
scales, covering many aspects of physics, biology or material sci-
ence. Among these techniques able to determine the chemical
composition of materials, we may  cite time-of-flight secondary ion
mass spectroscopy (ToF-SIMS) (Fletcher et al., 2007; Smentkowski
et al., 2007), scanning electron microscopy (SEM) and energy dis-
persive X-ray spectroscopy (EDX) coupled with a focused ion beam
(FIB) (Kotula et al., 2003b, 2006; Schaffer et al., 2007), electron
energy loss spectroscopy (EELS) and energy filtered transmission
electron microscopy (EFTEM) tomography (Weyland and Midgley,
2003; Gass et al., 2006), scanning transmission electron microscopy
using energy dispersive X-ray spectroscopy (STEM-EDX) (Möbus
et al., 2003; Yaguchi et al., 2004), or atom probe (AP) tomogra-
phy (Cerezo et al., 1988; Blavette et al., 1993). All these techniques
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require a specific specimen preparation combined with the corre-
sponding analytical detection chain. The accessible sample volumes
varies between the different techniques from few tenths of �m3 to
few Å3. However all these techniques have in common that they
produce a huge amount of raw hyperspectral data. Nowadays the
acquisition of raw datasets above 1 GByte is routine. Additional data
processing steps are always required to retrieve relevant informa-
tion prior to the tomographic reconstruction. The data processing
and tomographic reconstruction algorithm also depends greatly on
the method, in particular if it is a serial sectioning or an angular
tomography technique. Most of the data processing applied to the
data aims either to reduce noise and/or to segment the data on the
basis of the spectral information.

The most popular multivariate statistical analysis (MSA) meth-
ods is probably the principal component analysis (PCA). It was
invented more than a century ago by Pearson (1901). The usage
of MSA  emerged in chemometrics in the seventies with increasing
computer power and became more and more popular in the eight-
ies (Malinowski, 2002). It is only within the last two  decades that
PCA and related MSA  methods started to be used in microscopy,
with as a first application the treatment of hyperspectral data
acquired in EELS (Trebbia and Bonnet, 1990; Bonnet et al., 1999).
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Its usage in EDX has followed shortly (Titchmarsh and Dumbill,
1996). MSA, in particular PCA and factor analysis, allow to improve
the signal-to-noise ratio by reducing the dimensionality of the data
and to simplify their interpretation.

In this article we will focus on how these methods can be used
to improve the overall quality of 3D hyperspectral data. Trans-
formed data can be more easily interpreted in terms of element or
compound spatial distributions and used as a base for the segmen-
tation and the analytical 3D reconstruction of the analyzed volume.
A real case study has been considered here. A sample produced
by laser welding of a nickel–titanium alloy wire and a stainless
steel wire (Vannod et al., 2011). It presents a complex intermetallic
microstructure that has been analyzed by FIB-EDX (Burdet et al.,
2013). Previous studies from Kotula and co-workers on similar FIB-
EDX data and the usage of MSA  methods for the segmentation has
been reported (Kotula et al., 2003b,a). In this work results are com-
pared to a standard based EDX quantification performed on the
same dataset (Burdet et al., 2013; Burdet, 2012). This allowed us to
work on a already well characterized sample in order to demon-
strate the reliability of the MSA  methods for the segmentation of
3D hyperspectral data.

2. Methods

In social or life science, individuals and variables are clearly
defined. For example in the case of a group of persons as individuals,
and their weight, height, age, nationality, eating habits and so on
as variables, the relationship between individuals and variables is
unambiguous. On the contrary a microscopist who is dealing with
spectral images can equally considered images and spectra. Pixels
of an image can be seen as individuals and the different energy
channels of a spectrum as variables, or inversely energy channels
as individuals and pixels as variables. For this reason depending
on the point of view, we will refer to spectral domain and spatial
domain when applying operations on spectra and images, respec-
tively.

In our case the m × n data matrix D is organized in the following
manner: the columns represent all the pixels of the image (or all
voxels in the case of a 3D stack) and the rows represent the energy
channels of the spectra. Thus we have m pixels/voxels and n energy
channels. PCA first finds a linear combination of variables maxi-
mizing the variance in the least-square sense. This combination is
called the principal component. Then it removes this variance and
finds a second linear combination which maximizes the remaining
variance, and so on. The PCA decomposition corresponds to the
following matrix factorization:

D = TPT , (1)

where T is an orthogonal basis of vectors called the score matrix
and P is an orthonormal basis of vectors, called loading matrix. The
columns of the score T can be seen as the pixels, expressed using
a new basis of variables. The weights of each original variable, i.e.
energy channel, in the new variables are given by the columns of
the loading P. Despite these weights reveal the influence of a given
energy channel on the pixels of the spectral image, this new rep-
resentation of the data is said to be “abstract” as it as no direct
physical meaning. The product PTP yields to the identity matrix and
the product TTT to a diagonal matrix whose elements are the eigen-
values of the covariance matrix DTD. Each component, referring to
a score vector and its corresponding loading vector, is associated
to an eigenvalue that is directly related to the amount of variance
explained by the component. Hence the first components are the
vectors explaining the best the variance of the data. Usually by
selecting the p components having the highest eigenvalues, it is

possible to construct a model D̃ of the data containing most of the
valuable information:

D � D̃ = T̃P̃
T
, (2)

where T̃ is here a m × p matrix and P̃  is a n × p (for the sake of sim-
plification the tilde notation will be omitted in the following of the
article). The advantage of PCA is thus to reduce the dimensionality
of data since p � n. It is used to efficiently reduce the noise in the
data and the resulting model is a compression of the data without
much loss of information.

In practice in the case of spectra recorded by EDX and any data
generated by counting events, it is common to scale the data to
take into account the Poisson statistic (Keenan and Kotula, 2004),
so that the uncertainties in data are more uniform in the weighted
space (Cochran and Horne, 1977). Indeed PCA assumes that data are
normally distributed and a scaling step is often applied to satisfy
this assumption. For time-of-flight secondary ion mass spectrome-
try with high counting rate, a scaling following a binomial model is
more appropriate (Keenan et al., 2008). Weighted PCA decomposi-
tion also tends to be more stable and robust to outliers, and usually
leads to more compressed data.

There are several methods to perform the PCA decomposition.
The most straightforward is obviously to diagonalize the covari-
ance matrix but it is rarely used because it not numerically efficient
to compute it directly. If only few components are needed, the
non-linear iterative partial least squares (NIPALS) algorithm (Wold,
1966, 1975) can be used, as it avoids the calculation of the covari-
ance matrix. However the iteration time increases steadily for each
consecutive eigenvalue so that it can only be used to find a limited
number of components. This method has also an higher numeri-
cal accuracy. The method of choice is actually the singular value
decomposition (SVD) which is a widely used technique in linear
algebra. Efficient and numerically stable algorithm implementa-
tions are available freely (Anderson et al., 1999; Openblas, 2012)
or in commercial packages. SVD decompose the data matrix into
three matrix factors:

D = U�VT , (3)

where the orthonormal m × m U and n × n V matrices are called
respectively left and right singular vectors. The diagonal matrix �
matrix is known as the singular value matrix. � is uniquely deter-
mined when its diagonal entries are listed in descending order,
though the matrices U and V are not. They might be defined up to
sign only in the case all singular values are non-degenerated. SVD
provides a natural way to compute the PCA, because it is directly
related to the eigenvalue decomposition of the covariance matrix.
It can be easily shown that U and V are respectively eigenvectors
of DDT and DTD.

The main problem of the PCA is the abstract nature of the scores
and loadings, i.e. they have no direct physical meaning. They are lin-
ear combinations of the original images and spectra and are only
a representation of the data in a space maximizing the variance.
As a consequence, they are difficult to interpret. One would expect
components that could be directly interpretable in terms of pure
element or pure compound spectra S and abundance maps A, pro-
viding the relationship D = AST. In terms of linear algebra this means
to find matrices that are sparse, i.e. with many elements being equal
or close to zero (Smentkowski et al., 2009). One way to achieve this
goal is to perform rotations of the factors U or V depending on
if we  want to simplify the spatial or the spectral domain respec-
tively (Keenan, 2009). These rotations preserve the orthogonality
constraints on the domain they are applied but relax these con-
straints on the other domain. There are many methods to obtain
rotation matrices. They can be classified in two categories: ortho-
gonal rotations or oblique rotations. Orthogonal rotations preserve
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