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microscopy is presented. Secondly, applications of these methods for analysis of structures and compo-
sitions of typical nanocomposites are introduced. The nanocomposites are formed by different nanoscale

';frj; V'c’g:f:l sssessment processing technologies. Electrochemically polymerized polyaniline (PANi) nanocomposites, thermo-
Nanocomposites mechamcall.y process.ed rr.1eta1 matrix nanocqmposues, nanocast.ceramlc matrix composﬁes are typical
Characterization techniques examples discussed in this paper. Case studies on several functional nanocomposites for energy stor-
Energy conversion age/conversion, catalysis and sensing applications are mentioned. After that, assessment of the interface
Interface structures of nanocomposite materials using surface characterization techniques and mechanical damage
Mechanical damage model models is discussed. Finally, concluding remarks are provided.
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1. Introduction

A composite material has the synergistic properties of its matrix
and reinforcement. The structure of a composite can be controlled
in manufacturing processes. It determines the performances of
the composite material. Composite materials can be classified by
matrix types. There are three major types according to the nature of
the matrices, i.e. metal matrix composites, ceramic matric compos-
ites and polymer matrix composites. Composite materials are also
classified as continuously reinforced or discontinuously reinforced
depending on the aspect ratios of the reinforcements. Still, compos-
ite materials can be classified by the shape of reinforcements. If the
reinforcement in a composite material is zero dimensional, i.e. in
particle form, the material is called particle reinforced composite.
Obviously, particle reinforced composites belong to discontinuous
ones. One of the examples is the particle dispersion reinforced high
strength steels. If the reinforcement in a composite material is in
long fiber form, the material is called one dimensionally reinforced
composite. Ultrahigh molecular weight polyethylene (UHMWPE)
fiber reinforced epoxies fall into this category. The reinforcement in
a composite could be in planar form. In such a case, the material is a
2-D composite. For example, the hybrid composite containing alter-
natively stacked aluminum foil and fiber reinforced layer is a two
dimensionally reinforced composite material. Three dimensional
reinforcements are typically produced by interweaving continu-
ous fibers. For example, woven carbon fibers form 3-D frames.
The frames can be impregnated with phenolic resin. Then, calcina-
tion in inert atmosphere generate three dimensionally reinforced
carbon-carbon composite materials. 2-D and 3-D composites are
continuously reinforced materials.

Nanocomposite materials consist of nanoscale reinforcements.
The structures of nanocomposites determine the properties and
performances of the materials. In this paper, structural assessment
of nanoscale phase reinforced composite materials is reviewed.
Various structural characterization tools such as scanning electron
microscopy, X-ray diffraction, transmission electron microscopy,
atomic force microscopy, and scanning tunneling microscopy will
be briefly introduced. The structures of typical nanocomposites will
be shown. Finally, we will extend our discussions on assessment of
structural integrity of nanocomposites using an energy dissipation
model and a nonlinear mechanical damage model.

2. Nanoscale structure characterization techniques

Since the size of phases in nanocomposites is at nanometer
level, powerful characterization tools are needed for observing each
phase and assessing the structures of the composite materials. A
nanometer is one billionth of a meter, which is so small that high
resolution microscopes have to be used. The following subsections
provide a brief description of various morphological analysis meth-
ods. For more details, it is encourage to read the related books.
First, the atomic force microscopy is introduced. Then the scanning
probe technique is discussed and the work mechanism of scan-
ning tunneling microscopy is given. After that, electron microscopic
techniques including scanning electron microscopy and transmis-
sion electron microscopy are presented. X-ray diffraction, energy

dispersive spectrum and focus ion beam techniques are also briefly
mentioned in the last part of this section.

2.1. Atomic force microscopy

An atomic force microscope (AFM) uses a tiny and sharp tip to
tap or touch the surface of the specimen. Atomic force microscopy
(AFM) is classified as a kind of scanning probe microscopy (SPM).
The resolution of AFM is at the sub-nanometer scale or angstrom
level. The magnification in an atomic force microscope is the ratio of
the actual size of a feature to the size of the feature when viewed on
a displaying device. There are different work modes. AFM may run
under either contact mode or non-contact mode (tapping mode).
Under contact mode, the scanning tip is attached to the end of a can-
tilever across the specimen surface while monitoring the change in
cantilever deflection with a split photodiode detector. The tip may
contact the specimen surface through an absorbed fluid layer on the
surface. A feedback loop maintains a constant deflection. According
to Hook’s law, the magnitude of the atomic force can be calculated,
which is at the level of nano-Newton or micro-Newton. The verti-
cal distance the scanner moves at each pixel is stored to form the
topographic image of the specimen’s surface. Typically, the contact
mode is used for imaging hard and shallow surface, the structure
with periodicity, or the specimen in liquid environment.

Under a non-contact mode or tapping mode, the cantilever
is oscillating near or at the resonance frequency. The oscillating
amplitudeis in the range from several tens to one hundred nanome-
ters. The tip lightly taps on the surface of the specimen when the
scanner moves. A feedback loop maintains a constant oscillating
amplitude. The vertical position of the tip is measured at each pixel
of scan to generate the topographic image. Comparing the contact
mode and the non-contact mode, there is difference in the reso-
lution of the image. The contact mode allows to generate much
higher resolution images. However, the tapping mode maintains a
constant tip-specimen reaction. The tip has less chance to be struck
or broken. Besides, in the contact mode, the tip scratches the surface
of the specimen. This may cause the deformation of the surface of
those soft materials. The images obtained could have some extent
of distortion.

AFM may also run in the so-called phase mode. The work mech-
anism is based on the fact that measuring the phase shift of the
cantilever beam holding the AFM tip is carried outin stead of detect-
ing its resonance frequency change. The phase mode is unique in
the fact that it can generate material composition information. Even
though the surface of a specimen is flat, if the material consists of
different phases or functional groups, the surface mapping results
can reflect the phase/composition information. For example, the
vibration phase shift of the AFM tip generated by —CH3, and —COOH
can produce clear AFM images of certain polymers with significant
contrast revealing the locations of these functional groups.

2.2. Scanning tunneling microscopy

A scanning tunneling microscope (STM) works under the
following mechanism. A very fine tungsten tip made through elec-
trochemical etching is positioned within a couple of nanometers
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