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a  b  s  t  r  a  c  t

In  this  work  we  investigate  methods  of  statistical  processing  and  background  fitting  of  atomic  resolution
electron  energy  loss  spectrum  image  (SI)  data.  Application  of principal  component  analysis  to  SI data
has  been  analyzed  in  terms  of  the  spectral  signal-to-noise  ratio  (SNR)  and  was  found  to improve  both
the  spectral  SNR  and  its standard  deviation  over  the SI, though  only  the  latter  was found  to improve
significantly  and  consistently  across  all  data  sets  analyzed.  The  influence  of  the  number  of principal  com-
ponents  used  in  the  reconstructed  data  set on the SNR  and  resultant  elemental  maps  has  been  analyzed
and the  experimental  results  are  compared  to  theoretical  calculations.

©  2011  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Material structural and electronic properties are strongly influ-
enced by the presence of grain boundaries, dislocations and defects.
However, these types of structures provide extensive challenges
for quantitative electron microscopy investigations. For example,
strain and misalignments can complicate interpretation, making
analysis ambiguous. Advances in microscope hardware and stabil-
ity make it possible to collect electron energy loss (EEL) spectra
at atomic resolution simultaneously with high angle annular dark
field scanning transmission electron microscopy (HAADF STEM)
images, generating what are now commonly known as STEM spec-
trum images (SIs). In order to prevent beam-induced damage to
specimens and avoid effects of specimen drift during the long acqui-
sition required to scan the field of interest, short dwell times are
often employed. This can give rise to noisy data sets, which can
further hinder interpretation.

In order to extract reliable chemical information from SI data,
robust, quantitative and, ideally, automated analysis methods are
required. One approach that has been proposed to remove ran-
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dom spectral noise is principal component analysis (PCA) (Bosman
et al., 2006; Trebbia and Bonnet, 1990). PCA is a statistical technique
that uses the variance of the data in different dimensions to obtain
the principal components associated with the data. The data set
is then reconstructed using only those principal components that
provide significant information, eliminating those that represent
noise. In this way, random noise in the SI can be reduced without
loss of spatial or spectral resolution. PCA has been applied to atomic
resolution SI data sets with considerable success (Bosman et al.,
2007; Garcia-Barriocanal et al., 2010; Varela et al., 2009). Some
groups have also considered removal of detector and instrumen-
tation noise, though this is not yet routine (Thust, 2009; Riegler
and Kothleitner, 2010).

While PCA has been applied in a variety of different cases and
is now becoming more widely used, little is known about the sta-
tistical effects of PCA, particularly for atomic resolved images. In
this work we have investigated the effects of PCA from a statis-
tical standpoint and considered how the method affects optimal
background fitting of SI data. The effect of applying PCA has been
analyzed in terms of the spectral signal-to-noise ratio (SNR). In
order to evaluate SIs without operator bias, automated routines for
optimizing background fitting and edge integration region widths
over the entire SI have been developed. The routines generate
two-dimensional (2D) maps showing how the background fitting
coefficients and spectral SNR vary as a function of position in the
SI. As test cases, bulk 〈1 0 0〉 and 〈1 1 0〉 SrTiO3 have been consid-
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ered. Our results suggest that PCA has the most significant impact
on edges showing the poorest spectral SNR before PCA, such as
oxygen, and that improvements in the visual quality of the atomic
resolved maps are due to the reduction of spectral SNR standard
deviation.

2. Methods

2.1. Theory

In order to obtain elemental maps from experimental EEL spec-
tra, background extrapolation and edge integration are required.
The basic approach for background fitting makes use of a power-
law background, of the form c(E) = AE−r (where c(E) is the recorded
number of counts (background signal), E is the energy loss, and
A and r are the background fit coefficients), fitted over a pre-edge
energy range and then extrapolated into the edge integration range
(Egerton, 1996). The extrapolated background is then subtracted
from the total signal in order to obtain the characteristic edge signal.
The spectral SNR is calculated from the extrapolated background
and total signal in the edge integration region. Several methods for
calculation of the spectral SNR have been proposed, including lin-
ear least squares (Egerton, 1982) and maximum likelihood (Unser
et al., 1987) approaches. Using the linear least squares approach
to calculate spectral SNR, as described by Egerton (1982),  SNR is
calculated as:

SNR = IE
IE + hIB

(1)

where IE and IB are the integrated edge and background signals
in the edge integration region, respectively, and h = 1 + �IB /IB. The
variance of IB, �IB , is calculated using the background fit coefficients
and their variances, as described by Egerton (1982).

Several methods to improve the power-law background fitting
and/or spectral SNR have been proposed, including using multi-
ple pre-edge background fitting windows, ‘tying’ the background
fitting to a region well beyond the edge energy and shifting the
edge integration window to energies higher than the edge thresh-
old (Egerton and Malac, 2002; Kothleitner and Hofer, 1998). SI data
sets provide unique challenges for optimal background fitting, as
the data set can consist of hundreds of individual pixel spectra. For a
given edge, each pixel spectrum can have a unique background and
thus optimal fitting conditions can vary from pixel to pixel. In this
case, one approach is to consider all pixel spectra in the SI together
in order to maximize the spectral SNR of the final elemental map,
i.e., to maximize the ‘global’ spectral SNR. This method uses spec-
tral SNR as an unbiased metric to determine the background and
edge window widths and positions. We  have developed a parallel
MATLAB code that calculates the optimal background fitting and
edge integration windows based on maximizing the global spec-
tral SNR. The code calculates the spectral SNR associated with each
pixel spectra for a series of edge and background window widths
and edge integration window initial energies in order to find the
parameters that maximize global spectral SNR. The result is that
all pixel spectra have independent SNR, A and r values, fitted with
background and edge windows fixed over the entire SI; finally, a
mean SNR (‘global SNR’) and associated standard deviation can be
calculated. We  have implemented both the linear least squares and
maximum likelihood methods for SNR calculation, however, only
results using the linear least squares approach will be presented
here, as this approach allows for the background to be ‘tied’ using
a post-edge region. Details of the algorithms and implementation
can be found in Appendix A. Henceforth we will use the terms SNR
and spectral SNR interchangeably to refer to the spectral SNR of a
single pixel spectrum, while the term global (spectral) SNR will be
used to refer to the (spectral) SNR averaged over all pixel spectra in

the SI. We  will also refer to the standard deviation associated with
the global SNR simply as SNR standard deviation.

As outlined in Section 1, PCA is a statistical technique whereby
random noise can be removed by reconstructing the data using
only a selected number of principal components. The details of
PCA are reviewed in detail by several authors (Bonnet et al., 1999;
Bosman et al., 2006; Jolliffe, 2002; Watanabe et al., 2009) and will
not be covered here. When processing data with PCA, care was
taken to ensure that no components containing ‘significant’ vari-
ation were erroneously eliminated from the reconstruction, i.e., all
non-noise components were included in the reconstruction. The
number of non-noise (or ‘significant’) components was assessed
using the scree plot and score images, as described by Bosman
et al. (2006).  The exception to this was the cases where the data
sets were processed specifically to have more or less than the ‘sig-
nificant’ number components in order to assess the effect of the
number of components on spectral SNR (Section 3.4).

2.2. Experimental

SI data was collected using an FEI Titan3 fitted with a CESCOR
probe corrector operating at 200 or 300 kV, using a dwell time of
30 ms/pixel, convergence angle of 18 mrad and collection angle of
80 mrad; drift correction was  not employed during data acquisition.
The 80 mrad collection angle is needed to increase the collected
intensity and ensure that the full angular distribution of scatter-
ing is included so as to minimize the potential for artifacts in the
interpretation of the images (Botton et al., 2010; Dwyer et al., 2008;
Lazar et al., 2010). This large collection angle was achieved through
a special lens series programmed in our microscope as previously
discussed (Botton et al., 2010). Experimental conditions particu-
lar to the data sets analyzed are as follows: (a) bulk 〈1 0 0〉 SrTiO3
(STO100): operating voltage of 200 kV, SI 30 pixels × 30 pixels and
0.5 eV channel width; (b) bulk 〈1 1 0〉 SrTiO3 (STO110): operat-
ing voltage 300 kV, SI 75 pixels × 46 pixels and 1 eV channel width.
Raw SI data was  processed using the weighted PCA option (the
default setting) of the PCA routines available as a plug-in for Digi-
tal Micrograph (Watanabe et al., 2009; HREM Research, 2011). The
STO110 data was  reconstructed with nine components and the
STO100 data was reconstructed with five components, with the
exception of the those data sets where the number of components
used for the reconstruction was varied, as discussed in Section
3.4. The specimen thicknesses of both the STO100 and STO110
samples are expected to be less than 500 Å. In order to ensure
appropriate interpretation of the images based on calculations, we
have also done simulations at two  extreme thicknesses to ensure
there are no significant differences within the expected thickness
range.

Making use of both the 〈1 0 0〉 and 〈1 1 0〉 orientations of SrTiO3
provides us with the opportunity to investigate the effect of sto-
ichiometry on elemental mapping and background fitting, as the
〈1 0 0〉 unit cell contains Sr, Ti–O and O columns, while the 〈1 1 0〉
unit cell contains Sr–O, Ti and O–O columns (where the notation
O–O is used to indicate the presence of two  O atoms per unit cell,
while Sr–O, Ti–O and O are used to indicate the presence of one O
atom per unit cell).

2.3. Simulations

Simulations of HAADF STEM images were conducted using
a frozen phonon multislice approach (Kirkland, 2010), adapted
for speed to run on the multi-threaded architecture of the
graphics processing unit (GPU) (Dwyer, 2010). The calcula-
tions used supercells of size approximately 30 Å × 30 Å sam-
pled by 512 pixels × 512 pixels, and incorporate the qualitative
effects of source size by convolution with a Gaussian of 1 Å
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