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Abstract

Aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to

be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved

spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss

electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in

nature, and two common local approximations are compared to full nonlocal calculations. The affect of the channelling of the electron probe within

the sample is also discussed.
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1. Introduction

Electron energy loss spectroscopy (EELS) is a valuable tool

in materials science, providing both elemental mapping and

local bonding information via near edge structure. The

delocalization of the EELS interaction potential has been

broadly discussed, see for example Egerton’s book and

references therein (Egerton, 1996). Many descriptions of the

delocalization of the EELS interaction use a single interaction

width, such as a classical impact parameter. The effective core-

loss ionization interaction is however nonlocal in nature and not

easily described in terms of a single variable (Allen and

Josefsson, 1995). This is particularly the case for diffracting

samples or scanning transmission electron microscopy

(STEM), where EELS image formation depends on the

interference of different Fourier components of the incident

electron wave function.

In this paper EELS image localization and formation is

examined, with particular reference to STEM imaging. Recent

advances in aberration correction have allowed resolution in the

STEM of less than 1 Å in the case of annular dark field (ADF)

imaging (Nellist et al., 2004). The next generation of aberration

corrected machines promises resolution of near 0.5 Å (TEAM

Project, 2000). The localization of the EELS interaction for

STEM has been examined by considering the width of single

atom images (Kohl and Rose, 1984; Cosgriff et al., 2005). The

core-loss EELS image width is a complicated function of

binding energy, probe size and detector geometry.

These results however ignore the channelling of the incident

electrons within the sample. In this paper the process of STEM

image formation based on core-loss EELS is examined using an

optical potential formulation, with absorption due to thermal

diffuse scattering (TDS) included as an imaginary term in the

potential. The presence of heavy columns with the crystalline

sample leads to large angle scattering of the incident electron

beyond the EELS detector, as well as an attenuation of the

elastic intensity. The ‘focussing’ of the electron probe by the

atomic columns is also considered.

2. Theory

A general expression for the inelastic cross section of fast

electrons incident on a sample of thickness t and cross-sectional

area A may be written as (Allen and Josefsson, 1995; Allen

et al., 2006)

sð~G Þ ¼ 2pm

h2k

Z t

0

Z
A

Z
A

c�0ð~G ;~r? ; zÞWð~r? ;~r
0
? Þ

� c0ð~G ;~r0 ? ; zÞ d~r? d~r0 ? dz: (1)

The vector ~G serves as a place holder for the relevant variables

for a given experimental procedure. For example, for plane-

wave illumination, where the incident beam is tilted with

respect to the sample it describes the incident electrons wave
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vector~k. For the case of STEM it describes probe position~R. In

Eq. (1), m is the relativistic electron mass, h is Planck’s

constant, k ¼ j~kj and c0ð~G ;~r? ; zÞ describes the elastic wave

function of the incident electron within the sample.

The term Wð~r? ;~r0 ? Þ is an effective nonlocal potential, in

the projected potential approximation, and describes the

inelastic scattering process of interest, for example EELS

and energy dispersive X-ray analysis (EDX). It may be written

in the form (Oxley et al., 2005),

Wð~r? ;~r0 ? Þ ¼
h2k

2pmAt

X
~h;~g

m~h;~g exp ð2pi~h �~r? Þ

� exp ð�2pi~g �~r0 ? Þ; (2)

where~h and~g are variables in the Fourier transform space. For

inner-shell ionization from atom type b the inelastic scattering

coefficients m~h;~g are calculated using (Allen and Josefsson,

1995)

m~h;~g ¼
1

2pkVc

X
j

exp ½�Mb j
ð~g�~hÞ�

� exp ½2pið~g�~hÞ �~tb j
� f ð~h;~gÞ: (3)

The sum over j includes all atoms of type b within the unit

cell of volume Vc. The Debye–Waller factor Mbð~g�~hÞ
accounts for the thermal motion of the target atoms. The atomic

scattering form factor f ð~h;~gÞ is given by

f ð~h;~gÞ ¼ 1

2p3a2
0

Z Z
K 0
P

i; f F�i; f ð~Q~h;E f ÞFi; f ð~Q~g;E f Þ
j~Q~hj

2j~Q~gj2

dE f dVK 0 ; (4)

where a0 is the relativistically corrected Bohr radius. The

momentum transfer to the crystal is h~Q ¼ hð~K � ~K 0Þ where
~K and ~K

0
are the refraction corrected wave vectors of the

incident and scattered electron, respectively. The vector ~Q~h

is defined as ~Q~h ¼ ~Qþ~h. The indices i and f define the initial

and final states of the target electron, and E f is the energy of the

ejected electron. For EELS the detector geometry is defined by

the integration over dVK0 and dE f defines the energy window

over which the EELS signal is integrated. For EDX these

integrations cover all possible scattering angles and energy

losses.

The transition matrix element from the initial state to final

state is given by

Fi; f ð~Q~g;E f Þ ¼
R

u�f ðE f ;~rÞ exp ½2pið~Q~g �~rÞ�uið~rÞ d~r
�h f jexp ½2pið~Q~g �~rÞ�jii;

(5)

where uið~rÞ defines the initial state and u f ðE f ;~rÞ the final state

of the target electron, respectively.

We describe Wð~r? ;~r0 ? Þ as an effective nonlocal potential

because it is a function of two independent real-space vectors

and its Fourier components m~h;~g are similarly a function of two

independent reciprocal space vectors. Examination of Eq. (1)

shows that the cross section is a function of the product of the

incident wave function expressed in terms of two different real

space coordinates. It is hence not a function of the intensity of

the incident wave function alone. It may in this sense be

considered a ‘‘coherent’’ cross section, dependant not only on

the amplitude, but also the phase of the incident electron wave

function as it propagates through the specimen. The expressions

given here are a generalization of the expressions of Yoshioka,

which in turn are a generalization of the Bethe scattering

equations (Allen and Josefsson, 1995; Yoshioka, 1957; Bethe,

1928). Similar expressions have been derived, using different

starting points, independently by other authors (Dudarev et al.,

1993; Dywer, 2005). The sum over the product of transition

matrix elements seen in Eq. (4) is closely related to the mixed

dynamical form factor of Rose (1976). The effective

nonlocality is implicit in all these formulations.

The cross-section expression in Eq. (1) can be rewritten in

reciprocal space form as (Allen et al., 2003),

sð~G Þ ¼
Z

t

X
~h;~g

C�hð~G ; zÞCgð~G ; zÞm~h;~g dz: (6)

It is useful to consider some special forms of Eq. (6).

2.1. Plane-wave illumination

First let us consider the case where we have plane-wave

illumination (wave vector ~k) and channelling of the incident

electron is not significant. Eq. (6) can then be reduced to the

form,

sðkÞ ¼ tjC0ðkÞj2m~0;~0; (7)

which (ignoring some normalization factors) produces results

similar to Egerton’s programs SIGMAK and SIGMAL (Eger-

ton, 1979, 1981). In previous work this has also been referred to

as the kinematic cross section (Allen and Josefsson, 1995). The

cross section is a function of only the magnitude of the incident

wave vector k ¼ j~kj.
For crystalline samples, diffraction leads to significant

contributions to the cross section from Fourier components of

the incident electron wave function other than C0ð~kÞ. In this

case we rewrite Eq. (6) in the form

sð~kÞ ¼
Z

t

X
~h;~g

C�hð~K; zÞCgð~K; zÞm~h;~g dz: (8)

The Fourier components of the incident electron wave

function now become functions of the beam/crystal orientation

and the refracted wave vector ~K as well as the depth within the

crystal z. For EDX the variation with X-ray yield as a function

of beam orientation has been used to develop the method of

atom location by channelling enhanced microanalysis

(ALCHEMI), see for example Spence and Taftø (1983);

Andserson (1997); Oxley et al. (1999a) and references

contained within. An example of an EDX cross section as a

function of beam orientation, and simulation based on Eq. (8) is

shown in Fig. 1.

Similar cross-section variation, as a function of beam

orientation, is also observed for EELS, as shown in Fig. 2.
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