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a b s t r a c t

We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts
(QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs.
The phase difference between the gate voltages introduces an effective gauge field, which breaks the
time-reversal symmetry and generates pump currents. The pump currents display very different pump
frequency dependence for weak and strong e–e interaction. These unique properties are induced by the
helical feature of the edge states, and therefore can be used to detect and control edge state transport.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Topological insulators (TIs), strong spin–orbit coupling systems,
have attracted intense attention due to their unique electronic struc-
ture and novel transport property. A TI possesses a gap in the bulk and
a metallic surface and/or edge states at its boundary [1–5]. The edge
states are helical and robust against the non-magnetic impurity scat-
tering and local perturbation because the backscattering process is
forbidden due to the helical feature of the edge states [6–11]. One of
the key questions in this rapid growing field is how to detect and
control the topological edge state. This is because the presence of edge
states is determined by the global topology of the band structure of
TIs. So far the edge states in a quantum spin Hall (QSH) bar have been
detected by two- and multi-terminal conductances under a dc bias
between the source and the drain. Recently, there have been a few
proposals to control the edge state transport using the quantum point
contact (QPC), i.e., the inter-edge coupling [12–16]. The gap, which
blocks the edge channels, can be opened by the coupling between the
edge states at opposite boundaries.

Quantum electron transport without dissipation is always one
of the central issues of the condensed matter physics, e.g., super-
conductivity, the zero resistance induced by microwave radiation,
the quantum Hall effect in two-dimensional electron gas (2DEG)
and the recent discovery, the quantum spin Hall effect. Quantum
pump, a captivating quantum coherent effect, is a focal point of
mesoscopic physics, describing an electrical current generated by
periodically varying parameters of the quantum system rather
than using a bias [17–22]. Usually a dc current is associated to a
dissipative flow of the electrons in response to an applied bias

voltage. However, in systems of mesoscopic scale a dc current can
be generated even at zero bias, for example, in a quantum pump.
Quantum pump is closely associated with the symmetry breaking
in a mesoscopic system, e.g., the breaking of the time reversal
symmetry (TRS). Previous theoretical and experimental works
focused on quantum pump in conventional semiconductor me-
soscopic systems. Very recently, quantum pump in single and bi-
layer graphene shows interesting behaviors due to their unique
band structure. The evanescent modes dominate graphene quan-
tum pump at the Dirac point and the pump current depends
sensitively on the edge shape of graphene nanoribbons, i.e., the
edge states [23–27]. These edge states are protected by the pseu-
do-TRS. In contrast to graphene, the edge states in a quantum spin
Hall system are protected by the true TRS and show a unique spin-
momentum locking, i.e., the helical feature.

Recent studies in the TI field concentrated on dc transport,
while ac transport property is relatively unexplored. In this Letter,
we propose a quantum pump scheme to control and detect the
edge states in TIs by tuning the phase and amplitude of harmonic
gate voltages applied on two QPCs. The phase difference acts as an
effective gauge field and breaks the TRS, consequently induces
pump currents.

2. Theoretical model

First we consider a quantum spin Hall bar with two QPCs (see
Fig. 1). The solid (dashed) lines represent spin-up electron edge
states incident from the left (right) contact. The helical edge states
propagating along the opposite edges can be coupled at the two
QPCs. Since electrons in such quasi-one-dimensional helical edge
states are strongly correlated, the e–e interaction should be in-
cluded based on the Luttinger liquid (LL) theory, which was
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neglected in the previous works [15,16]. The strength of e–e in-
teraction is limited, i.e., < <K1/2 1, so that the constrictions are
far from being pinched off [12].

The low-energy Hamiltonian describing the helical edge elec-
trons is

∫∑ ψ ψ ψ ψ= − ( ∂ − ∂ )
( )σ

σ σ σ σ
=↑ ↓

† †H i v dx ,
1

F R x R L x L0
,

where vF is the Fermi velocity, ψγs γ( = − ( ) ( ) =L R s1 , 1 ;
− ( ↓ ) ( ↑ ))1 , 1 annihilate the left (L) or right (R)-moving spin-
down ( ↓ ) or spin-up ( ↑ ) electrons, respectively. Away from half-
filling of the one-dimensional band, time-reversal invariance
constrains the possible e–e interaction processes to dis-
persive ( ∼ )gd and forward scattering ( ∼ )gf . In the of the Fe-
rmi points, the corresponding interaction is given by

( )∫ ψ ψ ψ ψ ψ ψ ψ ψ= +↑
†

↑ ↓
†

↓ ↑
†

↑ ↓
†

↓H g dxd d R R L L L L R R , and = ( )H g /2fw f

∫ ψ ψ ψ ψ∑γ σ γσ γσ γσ γσ= =↑ ↓
† †dxR L, , , . We can bosonize the Hamiltonian

= + +H H H Hd fw0 , and obtain

∫ ( ) ( )∑ ϕ θ= ∂ + ∂
( )=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H

v
dx

K
K
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,
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where ϕi and θi are the boson fields within the standard
bosonization scheme. The indices 1 and 2 label the upper
and lower edges, respectively, ϕ Φ Φ ϕ Φ Φ= + = +↑ ↓ ↑ ↓, ,R L L R1 2
θ Φ Φ θ Φ Φ= − = −↑ ↓ ↑ ↓,R L L R1 2 . Φγσ is a chiral boson field related to
the electron annihilation operator ψ π( ) =γσ

π γΦγσt e a/ 2i2 , a is the

short distance cutoff. ( ) ( )π π= + − + +K v g g v g g2 / 2F f d F f d and

( )) ( )π π= + −v v g g/2 /2F f d
2 2 . The helical feature of the edge states,

i.e., spin-momentum locking, only allows two types of tunneling terms
at the QPCs. [28] One is the spin-preserving tunneling process

( ) ( )ψ ψ ψ ψ= + + ( )
ω

↑
†

↑ ↓
†

↓H U t e H c. . 3p p
i t

L R L R
J

The other is the spin-flip tunneling process

( ) ψ ψ ψ ψ= ( − + ) + ( )↑
†

↓ ↑
†

↓H U t H c. . 4f f L L R R

We will assume that ( ) ( )Ω ϕ= +U t U tcosp
p

p
p , ( ) =U tf U cosf

( )Ω ϕ+tf
f , which means that all contacts vary harmonically in time

with the same frequency Ω, but with different phases and strengths.
We introduce time dependence into the fermionic operators
ψ ψ→ μ−eL L

i tL and ψ ψ→ μ−eR R
i tR . μ μ ω− = = *e V /L R J , where *e is the

charge of electron.
Next we calculate the QSH edge current in the presence of

quantum tunneling (see Eqs. (3) and (4)) at the QPCs. The har-
monic oscillating gate voltages Vj ( = )j 1, 2 are applied at the two
QPCs located at xj. The tunneling current can be obtained from the
time evolution of the charge number operator of the right-moving
electrons ψ ψ=σ σ σ

†N aR R R , ( ) ( )= * ( ) = *σ σ σ⎡⎣ ⎤⎦j t e dN t dt e N H i/ , /R R R .

The expectation value for the current at time t is given by

( ) ( ) ( )( ) = | − ∞ − ∞ |†j t S t j t S t0 , , 0 , where 0 denotes the initial

state at → − ∞t , and ( )( − ∞) = ∫− ′ ′
−∞S t Te, dt H ti t

tun is the time
evolution operator, T is the time-order operator. The quantum
pump current occurs at vanishing source-to-drain voltage, there-
fore we only consider the lowest order in the perturbation ex-
pansion. To the lowest order in the perturbation, the scattering

matrix is given by ∫( − ∞) = − ′ ( ′)
−∞

S t dt H t, 1 i t
tun , therefore we

have ( ) ( ) ( )∫〈 〉 = − ′ |[ ′ ] |σ σ−∞
j t dt j t H t0 , 0R

i t
R tun . The charge cur-

rent is ( )= ( ) + ( ) − ( ) + ( )↑ ↓ ↑ ↓I j t j t j t j tc R R L L and the spin current

( )= ( ) − ( ) − ( ) − ( )↑ ↓ ↑ ↓I j t j t j t j ts R R L L . The spin preserving tunnel-

ing process only induces the charge current, but without the spin

current, i.e., ( ) ( )∫= − ∑ ′ |[ ′ ] |σ σ−∞
I dt j t H t0 , 0c

i t
R p , =I 0s . While

the spin-flip tunneling process induces the spin current

( ) ( )∫σ= − ∑ ′ |[ ′ ] |σ σ−∞
I dt j t H t0 , 0s

i t
R f , and a vanishing charge

current =I 0c .
The total charge (spin) tunneling current is = +I I Ic s c s dc c s ac/ / , / , .

In experiments, the frequency Ω of external gate voltage can be
very high, therefore, one can only measure the dc component of
the tunneling current

∑ ∑= = +
( )= ≠

I I I I .
5

c s c s dc
j

c s dc
j

i j
c s dc
ij

/ / ,
1,2

/ , / ,

The first term is the charge tunneling current for a single QPC, and
the second term is the interference term of the dc charge tun-
neling current.
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where ω( ) =sgn 1 for ω > 0, 0 for ω = 0, and �1 for ω < 0. J is the
first kind of the Bessel function, Γ is the Gamma function,

( )Δ = +K K1/ /2K , ω ω Ω= ++ J p, ω ω Ω= −− J p. = −x x x12 1 2 re-
presents the spatial separation between the two QPCs and
ϕ ϕ ϕ= −12 1 2 represents the phase difference between the time-
dependent voltages applied on the two QPCs. For the static case
Ω( = )0 of a QSH bar with a single QPC, the charge tunneling cur-

rent is given by ( )( )
( ) ω ω= ( )| |

Γ Δ

Δ Δ
*

−I sgnc dc
j

e U a
v J J,

2

2

2 2 1j
p

K

K K

2

2
, which is

consistent with the results in Ref. [12].
For the quantum pump case ω( = )0J , the dc charge current is
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Fig. 1. (Color online) Schematic of the quantum spin Hall systemwith two QPCs. V1

and V2 are the side gate voltages applied on the QPCs, respectively. μR ( μL) is the
chemical potential at the right (left) lead.
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