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a b s t r a c t

Environmental factors strongly affect the features of the electromagnetic spectra of fluorescent com-
pounds hosted by material media. The shape of the absorption and emission peaks, their characteristic
asymmetry and breadth, the Stokes shift and quantum yield are generally temperature dependent and
heavily influenced by both the local and extended physical properties of the medium. The theoretical
method used before to obtain the lineshape function is extended here to other terms of the interaction
energy between the optically sensitive orbital and the hosting medium, which become significant when
the spectral feature is broad. An analytical expression for the temperature dependent decay rate by non-
radiative processes is obtained by this way. Comparison with experiment on thermal quenching gives
agreement within the experimental uncertainty. The solvent polarity, its protic or aprotic character,
hydrogen bonds, proximity effects and presence of quenchers are expected to enter through the coupling
constants of the corresponding energy terms.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fluorescence is characterized by the wide frequency spectrum
displayed by the emitted light, which may occupy a substantial
part of the visible spectrum, and its occurrence at frequencies
significantly lower than those at which absorption takes place. The
latter occurs in a frequency range as broad as emission. A fluor-
escent spectral feature is generally associated to transitions be-
tween two specific states of a bonding electronic orbital which
take or release a well defined energy amount [1–3]. What widens
and shifts the spectral line is principally the coupling of the opti-
cally responsive orbital of the fluorophore, as is usually called the
fluorescent chemical compound when hosted by a different ma-
terial medium, with the acoustic vibrational modes of the hosting
medium. Fluorescence is thus related with a large strength of this
coupling [4].

A recently published fully quantal theoretical approach to the
problem provides a general expression for the line shape function
valid for spectral lines of any width or, equivalently, any strength
of the coupling of the electronic degrees of freedom with the ra-
diation field [4–6]. The theoretical framework assumes that the
electronic orbital undergoing the transition couples with the ele-
mentary excitations of the material medium through the con-
formational change of the molecule. Despite the striking success
attained in the accurate reproduction of the experimentally

observed lineshapes, the theory fails in predicting the right tem-
perature dependence of the fluorescent yield. The predicted
quantum yield is always unity, independent of the temperature
and particularities of the hosting medium, which contradicts ob-
servations. This communication amends the point showing that
the shortcoming comes from dropping a term of the system Ha-
miltonian which becomes significant when the coupling of the
electronic and configurational variables become strong enough, as
occurs in fluorescent molecules. This term does not contain vari-
ables of the radiation field and gives rise to a non-radiative decay
channel which competes with the radiative contribution. The
properties of the latter are not altered, but only the area of the
spectral feature. The correction yields a closed-form equation for
thermal quenching which exhibits very good agreement with
experiment.

The material medium hosting the fluorescent orbital has
acoustic modes of vibration extending over its whole volume,
whose frequencies are linear in the wavenumbers and form a
quasi-continuum with no ground state energy gap. On the con-
trary, optical and molecular vibration modes, and any kind of lo-
calized excitation, have finite energy and are expected to con-
tribute less than the acoustic modes, or produce a distinguishable
spectral component. Liquid solvents can support only longitudinal
acoustic waves, which do not give a complete account of the de-
grees of freedom of the system. The problem of the collective
dynamical variables of liquids is quite old [7], but has no clear-cut
solution yet. Recent ab initio molecular dynamics simulations in-
dicate that the remaining degrees of freedom are local configura-
tional excitations in the atomic connectivity network [8]. By their
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local character these excitations should have an energy gap. It is
assumed here that longitudinal phonons are the only relevant low
energy excitations in liquid media, keeping in mind that this de-
scription may be not always complete.

2. The Hamiltonian

The Hamiltonian of the condensed phase interacting with the
electromagnetic radiation field is written as [4–6]
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H0 is the Hamiltonian of the molecule in the condensed material
medium, aq is a phonon operator of mode q, with angular fre-
quency ωq, the mode propagating in the opposite direction is
denoted q̄. The fermion operator ℓ

†c creates a localized one-elec-
tron state, index ℓ characterizes both the molecular site and the
excitation state. The operator ℓ

†
ℓc c accounts for the occupancy of

the one-electron state ℓ. By the hermiticity of H0, the diagonal
matrix elements ℓgq between the local one-electron basis func-
tions satisfy = −ℓ

⁎
¯ℓg gq q .

The term H1 collects the terms proportional to the off-diagonal
matrix elements ℓ′ℓgq between the local one-electron basis func-
tions. The terms in ℓ′ℓgq , ℓ′ ≠ ℓ, contribute to hybridize the elec-
tronic states by effect of the distortion produced by the excitation
of the local bond. The neglection of H1 is usually referred to as
Condon approximation. However, fluorescence is characterized by
strong electron–phonon couplings and it will be shown in the next
sections that H1 may be large enough to produce notorious effects.

The remaining three terms, H2, H3 and H4, are the Hamiltonian
of the free electromagnetic field and its interaction with the
electronic bonds ℓ. The bosonic operators η

ν
→
†
k
create photons with

well defined momentum
→
k and polarization index ν, and the

coefficients appearing in H3 are written explicitly in Gauss units as
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where e m/ is the specific charge of the electron, V the volume
occupied by the system, ν̂

→e k the polarization unit vector of the
photon, and
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where 〈→|ℓ〉r and 〈→|ℓ′〉r are wave functions of the local electronic
orbital undergoing the transition. They are stationary states of the
electron moving in the field of the ions fixed at the equilibrium
sites they have when the whole system is in its ground state.

3. The lineshape

The coefficient ℓgq vanishes when ℓ corresponds to the ground
state of a molecular orbital. Hence the third term in the right hand
side of Eq. (2) vanishes when the binding electrons are all in their
ground states. In this situation the Hamiltonian H0 decouples into
an harmonic part for the nuclear variables and an electronic one,
in the spirit of the Born–Oppenheimer approximation. The ex-
citation of a one-electron state ℓ switches on the linear term of H0

coupling the nuclear and electronic variables.
The energy spectrum and stationary states of H0 can be derived

exactly replacing the new Bose operators [4,5]
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which excite nuclear vibrations around equilibrium positions
which are displaced with respect to the equilibrium configuration
taken by the system when all the electronic quantum numbers
have the ground state values. Details of the procedure can be
found in the literature [4,5], however a brief review of the results
is given here, mainly for the sake of defining the notation and for
recalling some ideas which will be important for interpreting the
forthcoming results.

The eigenvalues and eigenvectors of H0 read
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when only one electronic orbital is excited to the state ℓ. Here | 〉00
denotes the ground state of the system, with no vibrational and no
electronic excitations. With some work it can be shown that [5]
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where ω= ( − )ℓ′ℓ ℓ′ ℓG g g /q q q q and ( )μL xn is the generalized Laguerre
polynomial of the variable x in standard notation.

Neglecting by the time being H1 and H4, Fermi's golden rule
applied to the linear interaction term H3 between the optically
sensitive orbital and the radiation field gives for the probability
per unit time of a transition between the stationary states (11),
concurrent with the creation or annihilation of a single photon

ν(
→

)k, . Replacing in golden's rule the interaction term H3 and Eq.
(12), expressing the δ-function by its integral representation, and
then summing over all the initial excitation numbers nq and the
final ones μ+nq q, weighting the former with their thermodynamic
probabilities, it is obtained that
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