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a b s t r a c t

We study the influence of the on-site and nearest-neighbor interactions on the eigenstates and dynamics
of two-particles restricted to move in a one-dimensional optical lattice. An effective tight-binding
approach with non-local interactions is employed in order to consider the non-perfect screening of the
coulomb interaction between two-particles. Numerical and analytical results unveil the emergence of a
new sub-band of bound states due to the nearest-neighbor interaction, besides a broadening of the usual
sub-band associated with the hubbard-like on-site coupling. Furthermore, we solve the time-dependent
schrodinger equation to follow the time evolution of an initially localized two-particles state. While the
on-site interaction is responsible for a correlated dynamics in which particles occupy predominantly the
same site, nearest-neighbor interactions is shown to be able to induce a quantum walk on which the
particles remain predominantly in neighboring sites.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The advancements of techniques in cooling and manipulating
ultracold atoms in optical lattices have promoted remarkable
progress in condensed-matter physics. For example, one can use a
non-interacting Bose–Einstein condensate to study Anderson
localization, [1,2] observe persistent Bloch oscillations of weak-
interacting bosonic Sr atoms [3] or use an ultracold fermionic
atoms to implement the Haldane model and characterize its
topological band structure [4]. In particular, the control of the
interactions using Feshbach [5,6] resonance technique and the
control of kinetic energy via lattice depth in ultracold atoms have
provided a route to explore the physics of Hubbard models [7–10].
These advancements in experimental techniques are an important
step in the research and understanding of quantum many-body
states.

Recently, Bose–Einstein condensate of 87Rb atoms in a cubic 3D
optical lattice exemplified the correspondence between the Hub-
bard model and ultracold atoms in optical lattices [11]. A two-
atom bound state was observed that exhibit long lifetimes and
arises from the lattice band structure and repulsion between
particles. Pairing of particles can be produced in an analogous
manner in Fermionic atoms [12] and Bose–Fermi mixtures [13]. In
general lines, it is believed that the stability of bound particles
could be the basis of an abundance of new quantum many-body

states or phases. For example, the coherence of Cooper-pair tun-
neling in Josephson-junction systems has been extensively studied
due to their great potential in both quantum computation and
nanotechnology [14]. In a seminal paper Shepelyansky [15] found
that bound states of two interacting particles are responsible by
weakening of Anderson localization. This behavior has been seen
in other works, both theoretical [16,17] as well as experimental
bosonic [18] and fermionic [19] systems. Bound states of two
interacting particles are also responsible for inducing the coherent
phenomenon of frequency doubling of Bloch oscillations [20,22–
24]. Predicted for two interacting particles subjected to an external
electric field and restricted to move in a linear chain [20,22,23], its
experimental observation was recently reported in ultracold atoms
of bosonic 87Rb [24]. An equivalent photonic setup, where two
particles in 1D are mapped to a 2D array of waveguide, has been
proposed [25] and experimentally achieved in waveguide lattices
[26]. Besides, few interacting bosons in a one-dimensional lattice
with dc bias displays fractional Bloch periods which are inversely
proportional to the number of bosons clustered into a bound state
[27]. An experimental setup to create anyons in one-dimensional
lattices with fully tuneable exchange statistics is proposed by
Keilmann and collaborators [28]. The experiment proposes fea-
tures such as the full control and tuneability of the particles'
exchange statistics. More recent studies displays a scheme for
realizing the anyon Hubbard model. The scheme allows for con-
trollable effective interactions for an exact two-body hard-core
constraint [29].

In this work, we will show that two interacting electrons
allocated in an optical lattice can produce the emergence of a two
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sub-band of bound states. Described in the framework of the tight-
binding Hubbard model hamiltonian wherein there is on-site and
nearest-neighbor interactions between particles, we examine the
eigenstates and the time dependence of wavepackets. Numerical
and analytical results unveil the emergence of a new sub-band of
bound states due to the nearest-neighbor interaction, besides a
broadening of the usual sub-band associated with the Hubbard-
like on-site coupling [30,20]. By following the time evolution of
wavepackets, we will show that while the on-site interaction is
responsible for a correlated dynamics in which particles occupy
predominantly the same site, nearest-neighbor interaction is
shown to be able to induce a quantumwalk on which the particles
remain predominantly in neighboring sites.

2. Model and formalism

In order to describe two-interacting electrons with opposite
spins placed in an optical lattice, while there is on-site and
nearest-neighbor interactions between them, we consider a tight-
binding Hubbard model hamiltonian as

H¼ J
X
〈lm〉

X
σ
c†l;σcm;σþU

X
l

n̂ l;1n̂l;2

þV
X
〈lm〉

X
σ;σ 0

n̂l;σ n̂m;σ 0 þ
X
l

ϵln̂ l;σ : ð1Þ

Here c†l;σ and cl;σ are the creation and annihilation operators for the
particle at site l with spin state σ. 〈lm〉 denotes nearest-neighbor
and n̂l;σ ¼ c†l;σcl;σ . J is the nearest-neighbor hopping, ϵl the on-site
energies, U and V the on-site and the nearest-neighbor interaction
strength respectively. The screened Coulomb potential contains an
exponential damping factor associated with the inverse screening
length [21]. As the nearest-neighbor interaction V is added in
order to mimic the non-perfect screening of particles, we assume
that the screening length is very small and we will focus on values
VrU=3.

The central object of interest is to identify the role of the non-
local on-site Hubbard interaction between particles on the eigen-
states and the dynamic behavior of wavepackets. Therefore, initi-
ally we will apply a numerical diagonalization procedure of the
Hamiltonian in order to obtain all eigenvectors jΦ〉¼P

l;mϕðl;mÞj
l;σ;m;σ0〉 and eigenvalues E. On the other hand, in order to follow
the time evolution of wavepackets, we solve the time-dependent
Schrödinger equation by expanding the wavefunction in Wannier
representation

jΦðtÞ〉¼
X
l;m

ϕl;mðtÞj l;σ;m;σ0〉; ð2Þ

where the ket j l;σ;m;σ0〉 represents a state with one particle with
spin σ at site l, and the other particle with spin σ0 at site m. In this
model we consider the particle as being distinguishable by their
spin state since the Hamiltonian does not involve spin exchange
interactions. Thus, the time evolution of the wavefunction in the
Wannier representation becomes

J½ϕl�1;mðtÞþϕlþ1;mðtÞþϕl;m�1ðtÞþϕl;mþ1ðtÞ�

þV ðδlþ1;mþδl�1;mÞϕl;mðtÞþδl;mUϕl;mðtÞ ¼ i
dϕl;mðtÞ

dt
; ð3Þ

where we used the on-site energies ϵl as the reference energy
(ϵl ¼ 0) without any loss of generality, besides using units of
ℏ¼ J ¼ 1.

The above set of equations was solved numerically using a
high-order method based on the Taylor expansion of the evolution

operator ΓðΔtÞ,

ΓðΔtÞ ¼ e� iHΔt ¼ 1þ
Xnf

n ¼ 1

ð� iHΔtÞsn
n!

ð4Þ

where H is the Hamiltonian. The wavefunction at time Δt is given
by jΦðΔtÞ〉¼ΓðΔtÞjΦðt ¼ 0Þ〉, used recursively to obtain the
wavefunction at time t. The following results were taken by using
Δt ¼ 0:07 and the sum was truncated at nf¼20. This cutoff was
sufficient to keep the wavefunction norm conservation along the
entire time interval considered. We followed the time evolution of
an initially Gaussian wavepacket with width ρ

〈l;σ;m;σ0 jΦðt ¼ 0Þ〉¼ 1
AðρÞ exp �ðl� l0Þ2

4ρ2

" #

�exp �ðm�m0Þ2
4ρ2

" #
; ð5Þ

where the initial positions (l0,m0) were considered to be centered
at (N=2�d0;N=2þd0). Through the above-described approach, we
computed typical quantities that can bring information about the
eigenstates and wavepacket time-evolution, as will be
detailed below.

3. Results

3.1. Eigenstates: numerical and analytical analysis

We firstly examine the two-particles eigenstates by applying a
numerical diagonalization procedure of the complete Hamiltonian
to an open chain with N¼200 sites. In Fig. 1 we show results for
the normalized density of states defined as

DOSðEÞ ¼ 1
N

X
l

δðE�ElÞ; ð6Þ

versus energy E for U ¼ 4;8 and 12, without nearest-neighbor
interaction V¼0 (see brown filled curve) and with nearest-
neighbor interaction V ¼U=3 (see unfilled curve). Insets show
amplifications of the density of states, highlighting different
aspects between V¼0 and Va0. For U¼4 the DOS exhibits the
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Fig. 1. Normalized density of states (DOS) versus energy (E) for U ¼ 4;8 and 12,
computed for open crystalline chains (ϵl ¼ 0 for all n) with N¼200 sites. The pre-
sence of the nearest-neighbor interaction (here V ¼U=3) gives rise to a new sub-
band of bound states, besides increasing the width of the “on-site” sub-band (see
unfilled curve). The insets show amplifications of the density of states around the
sub-bands.
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