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a b s t r a c t

We study a thin-film quantum wire/unconventional superconductor junction in the presence of an
intrinsic exchange field for a d-wave symmetry of the superconducting order parameter. A strongly spin-
polarized current is generated due to an interplay between Zeeman splitting of bands and the nodal
structure of the superconducting order parameter. We show that strongly spin-polarized current is
achievable for both metallic and tunnel junctions. This is because of the presence of a quantum wire
(one-dimensional metal) in our junction. While in two-dimensional junctions with both conventional [F.
Giazotto, F. Taddei, Phys. Rev. B 77 (2008) 132501] and unconventional [J. Linder, T. Yokoyama, Y. Tanaka,
A. Sudbo, Phys. Rev. B 78 (2008) 014516] pairing states, highly spin polarized current takes place just for a
tunnel junction.

Also, the obtained spin-polarized current is tunable in sign and magnitude in terms of exchange field
and applied bias voltage.

& 2016 Elsevier Ltd. All rights reserved.

1. introduction

The investigation of the active control and manipulation of spin
degrees of freedom in solid state systems has generated a research
field known as spin electronics or spintronics [1–5]. In spintronics,
the combination of electronics and magnetism which are two
main branches of physics takes place and it leads to the generation
of spin polarized currents. The role of magnetism on spin-
polarized transport as well as Josephson current has been
addressed in different works [6–9]. One of the main questions in
this field is related to manipulating the spin polarization of an
electrical current. In relation to this matter, one of the good sug-
gestions has been the use of semiconducting materials. In these
materials there is a coupling between the electron orbital motion
and the spin degree of freedom [10–14]. This coupling stems from
the spin–orbit coupling which exists in such materials. Thus, they
have a good potential for controlling the spin injection in spin-
tronic devices.

Using the superconductors in spintronic applications caused to
create a subfield known as superspintronics. The idea is based on
the combination of useful superconducting properties with spin
manipulation [15–17]. The Cooper pair in most superconductors
has a spin singlet symmetry and as the result it does not carry a
net spin. Introducing the strong magnetic sources into such
superconductors can help us obtain a strong spin polarized current
which can be done by either “proximized” superconductors or
Zeeman-split superconductors. In relation to “proximized” super-
conductors, an exchange field is induced into the superconductor

via the proximity effect [18,19]; therefore, by applying a static
magnetic field in a superconductor, a Zeeman-split super-
conductor can be produced.

Giazotto and Taddei [18] studied a normal metal/insulator/s-
wave superconductor junction, subjected to an in-plane magnetic
field and showed that the junction could produce a strongly spin-
polarized current if two conditions were satisfied: low tempera-
tures and strong barrier strength (tunneling limit). In Ref. [19], the
effect of the orbital symmetry of the superconducting pair
potential on the spin-polarized current is studied theoretically. It
showed that spin-polarization is strongly changed by different
kinds of superconducting pair states and hence, spin-polarization
can be used as a tool for finding the information about the sym-
metry of pair potential of superconductors. In two-dimensional
normal metal/d-wave superconductor junctions, the formation of
Andreev bound states has a crucial role on tunneling spectra in a
way that it leads to the formation of zero-bias peaks. However, in
quantum wire/d-wave superconductor junctions, zero-bias peaks
disappear in tunneling spectra which is due to the quantum-
mechanical diffraction of the electron waves by narrow opening
[20–22]. Accordingly, the presence of a quantum wire can affect
the spin-polarized current, the case which we examine in
this paper.

In the current study, we investigate a quantum wire/d-wave
superconductor junction in the presence of a Zeeman-splitting
exchange field. For a quantum wire aligned along the (100)-axis of
the superconductor, we have found a high spin-polarized current
in the tunneling limit (strong barrier strength) and for the weak
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barrier strength (transparent interfaces), the results show that the
current gets negative values which means the current is domi-
nated by minority-spin carriers. For (110)-axis of the super-
conductor, the situation is completely different, because there is a
strong spin-polarized current when the interface barrier between
the normal metal and the superconductor is absent. In fact, there
is a strong spin polarization for perfectly transparent interfaces
which is an interesting result that does not appear in two-
dimensional junctions. As it is mentioned in Refs. [18,19], a
strong spin-polarized current is produced just in the tunneling
limit (strong barrier strength) for two dimensional junctions.

2. Theory

The system under study consists of a quantum wire of width
(w) and a thin superconducting film and they form a quantum
wire–insulator–superconductor (QwIS) junction. We assume a
static magnetic field (H) which is applied to a thin-film super-
conductor, with d-wave symmetry (see Fig. 1(a)). The condition
Ts⪡λ should be satisfied, where λ is the magnetic penetration
depth and Ts is the thickness of the superconducting film. Con-
sequently, a Zeeman energy, h¼ gμB

2 H; is induced, in which g is the
gyromagnetic factor and μB is the Bohr magnetron. One can ima-
gine an equivalent setup as QwIS/F where F indicates a ferro-
magnetic layer which is in a good contact with the superconductor
(see Fig. 1(b)) where the ferromagnetic layer can produce an
exchange field by proximity effect.

The experimental set-up which is introduced in Fig. 1 is similar
to those represented in Refs. [2,23,24] but with the following
differences: in Fig. 1 we have used one normal single mode

quantum wire with wave vector kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE
ℏ2

þk2F � π
w

� �2q
which is in

contact with a ferromagnetic d-wave superconductor while in
Refs. [23,24] the system is based on two ferromagnetic quantum
wires in contact with a superconductor. For applicable purposes, in
our model one can use CeCoIn5 which is a ferromagnetic super-
conductor [26]. In Fig. 1, we have used a single mode quantum
wire which is in contact with a d-wave superconductor under an
external magnetic field. In what follows we show that how these
set-up configurations can produce a spin polarized current which
can be used in spintronic devices.

We consider the quasiparticle tunneling into the super-
conducting side from a quantum wire with width (w). The quan-
tum wire and the superconductor are in the same plane and we
assume that the thickness of both of them is infinitesimally small.
In order to calculate the current flowing across the junction, we
apply the formalism of Blonder et al. [25], hence, we should obtain
the quasiparticle wave functions and excitation energies. For this
purpose, we need to solve the following equations:

ðH0�σhÞuσ
k
!ð r!ÞþΔð k!; r!Þνσ

k
!ð r!Þ¼ Euσ

k
!ð r!Þ

ð�Hn

0�σhÞνσ
k
!ð r!ÞþΔnð k!; r!Þuσ

k
!ð r!Þ¼ Eνσ

k
!ð r!Þ ð1Þ

Where H0 ¼ P2

2mþVð r!Þ�EF is the one-particle Hamiltonian with
EF the Fermi energy. We assume the effective mass and Fermi
energy to be identical in both sides of the junction and use the
step function model for the order parameter, while we assume it
to be zero in the quantum wire side. In the superconductor region,
the anisotropic order parameter is a function of the wave vector

Δ k
!

; r!
� �

where k
!

is fixed at the Fermi surface.

We use a step function form for order parameter and exchange

field as Δ k
!

; r!
� �

¼Δð k!ÞθðxÞ, hð r!Þ¼ hθðxÞ in a way that they are

completely zero in quantum wire region whereas they get non-
zero values in superconductor region.

The dependence of order parameter on temperature and
exchange field is determined from the following self-consistent
equations:

1¼ λ
2π

Z 2π

0
dϕ

Z εc

0
dε

cos 2ð2ϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2þΔ2ðT ;hÞ cos 2ð2ϕÞ

q ðgþ þg� Þ ð2Þ

Where λ is the electron–phonon coupling parameter and εc is
the cut-off Debye energy, and g7 is defined as:

g7 ¼ tanh
ffiffiffi
ε

p 2þΔ2ðT ;hÞ cos 2ð2ϕÞ8h
2kBT

" #
ð3Þ

From the above equations, we can find the dependence of order
parameter on the temperature and exchange field.

At a finite temperature, the order parameter decreases with the
increase of temperature in such a way that it has a sudden drop
from a finite value to zero at a critical temperature and shows a
first order phase transition which stems from the presence of an
exchange field. It should be noted that at zero exchange field the
superconducting transition is a second- order phase transition.

At zero temperature, Eqs. (2) and (3) indicate that order para-
meter does not depend on the exchange field and when the
exchange field equals Δ0ðΔ0 ¼ΔðT ¼ 0;h¼ 0ÞÞ, the order parameter
drops to zero. It means that at zero temperature ΔðhÞ ¼Δ0 for 0
rhrΔ0 and ΔðhÞ ¼ 0 for h4Δ0.

Nevertheless, it is shown in Refs. [26,27] that the allowable values
for the exchange field are just for 0rhr0:56Δ0. In fact for h40:56
Δ0 the normal state has lower energy than the superconducting state
and the stable state becomes the normal state. In the exchange fields
less than 0:56Δ0 , the calculation of thermodynamic potential of

Fig. 1. (Color online) Schematic representation of the system under study: (a) a
normal quantum wire–d-wave superconductor junction in an external magnetic
field which is a “Zeeman-split” superconductor layout; (b) a normal quantum wire/
d-wave superconductor/ferromagnetic metal, where an exchange field is induced
by a ferromagnetic layer which is in contact with superconductor and induced the
ferromagnetism via the proximity effect.
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