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a b s t r a c t

Line defect induced conductance suppression in graphene nanojunction is investigated by means of
Landauer–Bütikker formula and the nonequilibrium Green's function technique. With the increase of the
longitudinal size of the device region, the conductance value decreases and tends to form two con-
ductance valleys. Then we prove that the line defect can lead to localize states in the device region, which
contributes to conductance valley at the point far away from Dirac point. And the zero conductance at the
Dirac point is associated with the edge state localized at the zigzag-edged shoulder of the nanojunctions.
The staggered potential can change energy spectrum structure of the device region, and produce strong
conductance suppression. The line defect can efficiently enhance the conductance suppression, which
can be utilized to realize the electron transport manipulation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene is the first realization of truly two-dimensional
crystal, which has became a subject of intense interest in the
past ten years [1–6]. Previous studies showed that pristine gra-
phene is a zero-gap semiconductor and has a linear dispersion
relationship nearby the Dirac points [5,7], which makes electrons
behave as relativistic Dirac particles. Such a carbon material pre-
sents many unusual physical properties in comparison with con-
ventional materials, such as the quantum Hall effect and the
nonzero conductivity [1,8,9]. Graphene also has been an important
two-dimensional material for exploring condensed matter physi-
cal phenomena and is expected to be very useful in the next
generation of electronic devices [3,5,10].

Recently, the experiment reported a peculiar topological line
defect in graphene [11], which can be created by alternating the
Stone–Thrower–Wales defect and divacancies, leading to a pat-
tern of repeating paired pentagons and octagons [12]. In addition,
first-principles calculation and experimental observations show
that this defect acts as a one dimensional metallic wire [11],
which motivates researchers to further discuss the electron
properties or designs the schemes of valley polarization [13–15].
Moreover, the study also found that the metallic characteristics
and Fabry–Perot oscillation phenomena can be observed due to
the line defect [16]. Considering that the line defect has a simple

geometry makes them suitable to observe the electron properties
in graphene nanojunctions (GNJs). Thus receiving extensive
attention, some interesting line defect based transport phenom-
ena have been observed [12,17–20]. For example, Rodrigues et al.
studied the low-energy electronic transport across periodic
extended defects in graphene by a continuum approach. They
found that the defect acts as infinitesimally thin stripes separ-
ating two regions where Dirac Hamiltonian governs the low-
energy phenomena in the continuum low-energy limit [21,22].
Gargiulo and collaborator found the structural topological
invariant of dislocations, and revealed a strong suppression of
transmission at low energies upon decreasing the density of
dislocations with the smallest Burger's vector [23]. Inspired by
these fascinating physical phenomena and possible potential
device applications, in this work, we theoretically investigate the
impact of a line defect on the transport properties of GNJs. We
found that such a system can be considered as a promising
candidate for manipulating the electron transport.

In addition, the staggered potential has had extensive theore-
tical investigations in many systems. The study found that the
staggered potential is very helpful in finding fascinating quantum
phenomena and quantum phase transitions [24–26]. For example,
it found that a staggered potential can help observe quantum spin
Hall effect in graphene. Changes of the quantum phase shift can be
induced by a quantum phase transition. It should be noted that in
the experiment one can realize the potential staggered on gra-
phene by an asymmetric interaction with a substrate [27–29].
Therefore, we also consider a general situation that the graphene
bulk lattice can be subject to a staggered potential in this work.
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Whereby we observe the staggered potential impact on the
transport properties of GNJs containing the line defect.

2. Model and theory

The lattice structure that we consider is depicted in Fig. 1, two
semi-infinite graphene nanoribbons (GNRs) at the left and the
right sides serve as two leads for electronic transmission. Here, we
define the parameters NL and NR as the width of the two semi-
infinite GNRs, which are needed to characterize a clear junction.
The armchair-edged GNRs are metallic when the width satisfy NL

ðRÞ ¼ 3pþ2 where p is an integer, otherwise, it is semiconducting
[24]. The central region with one line defect constitutes the device
region (shaded), where the electron tunneling is scattered. We use
the parameters NDLðRÞ and LDLðRÞ as the latitudinal and longitudinal
size, respectively.

The low-energy properties in graphene are mainly determined
by the pz orbital. The total Hamiltonian H can be divided into four
terms, H¼HCþHLþHRþHT , where HC is the central region, HL and
HR describe the left and the right leads, respectively, and HT is the
coupling of central region to the left and the right leads. Thus, we
use a single-orbital nearest-neighbor tight-binding model to
describe the electronic properties of the GNRs. They may take the
following forms:

HC ¼
X

iAC

εid
†
i diþ

X

〈i;j〉

ðtd†i djþH:c:Þ; ð1Þ

Hα ¼ LðRÞ ¼
X

iAα

εαd
†
i diþ

X

〈i;j〉

ðtd†i djH:c:Þ; ð2Þ

HT ¼
X

〈i;j〉ðiAC;jAαÞ
ðtd†i djþH:c:Þ: ð3Þ

where we use d†i ðdiÞ as the electron creation(annihilation) opera-
tor, which is associated with the local atomic orbits i in graphene.
〈i; j〉 denote the summation that is restricted between the pairs of
the nearest neighbor sites. εC, εL and εR are the on-site energies in
the center region, the left and the right leads, respectively. In
addition, we consider a general situation where the bulk lattice
can be subject to a staggered sublattice potential: εA ¼Δ for lattice
sites Að�Þ, εB ¼ �Δ for lattice sites Bð○Þ, and εd is the on-site
energies of the line defect. It should be noted that the rearranging
of carbon atoms near the line defect induced bond distances
changes very little, so in what follows we will select the hopping
energy t as the units of the energy, the lattice constant a as the
units of the length, and the zero point of the energies as the Fermi

energy level. The on-site energy ε of all lattice points in GNJs
are zero.

The conductance of the GNJs is calculated based on the Land-
auer–Bütikker formula in the discrete lattice representation
[31,30]. It gives

GðEÞ ¼ 2e2

h
TðEÞ: ð4Þ

Here TðEÞ ¼ TrðΓLGΓRG
†Þ is the transmission coefficient. G¼

½Eþ i0þ �Hd�ΣL�ΣR��1 is a retarded Green function, E is the
incident electron energy, and Hd is the tight-binding Hamiltonian of
the device region. ΣLðRÞ are the two self-energy terms which are
associated with the coupling functions ΓLðRÞ by ΓLðRÞ ¼ i½ΣLðRÞ �Σ†

LðRÞ�.
The two self-energy terms can be evaluated by the recursive method
[31]. The current through the junction is calculated as I ¼ 2e

h

R ½f ðμLÞ
� f ðμRÞ�TðEÞ dE by Green's function, here f is the Fermi distribution
functions, μL and μR are the chemical potential of the left and the
right leads, respectively. The local density of states (LDOS) at site i
can be found: ρi ¼ � 1

πIm½Gði;iÞ�, where Gði;iÞ is the matrix element of
Green's function at site i.

3. Results and discussion

According to these theories, first in Fig. 2 we plot a comparison
of the conductance spectrum of the GNJs. From Fig. 2(a) we can see
that the conductance spectra exhibit staircase-like structures in
the absence of a line defect ðNL ¼NR ¼ 17;ncÞ, which can be readily
explained by matching the subband structures of the two com-
ponent ribbons. When the line defect appears in the device region

Fig. 1. (Color online) Schematic of the graphene nanojunctions, the parameters
NLðRÞ and NDLðRÞ are the width of the two semi-infinite graphene nanoribbons and
the central region (shaded), LDL and LDR are the longitudinal size of the intermediate
segment. NDM is the lattice points in the line defect. The carbon atoms belonging to
the two distinct sublattices A and B are distinguishingly labeled as A: � and B: ○,
where C: ⊚ for labeling atom A or B, which can possess either positive or negative
staggered potentials.

Fig. 2. (Color online) The comparison of the conductance spectra of the graphene
nanojunctions, here we use nc to represent not contain line defects, and use the c to
indicate containing line defect. (a) The conductance spectrum of equal width
NL ¼NR . (b) and (c) The comparison of the conductance spectrum by changing the
longitudinal size L and the width of the central region NDLðRÞ . ðNDLðRÞ ¼NR ¼ 17Þ
indicates the line defect that exists in the wide side.
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