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a b s t r a c t

We use the SU(3) Schwinger's boson theory to study the spin transport properties of the two-
dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T¼0. We have investi-
gated the behavior of the spin conductivity for this model which presents a single-ion anisotropy and J1
and J2 exchange interactions. We study the spin transport in the Bose–Einstein condensation regime
where we have that the tz bosons are condensed and the following condition is valid: 〈tz〉¼ 〈t†z〉¼ t. Our
results show a metallic spin transport for ω40 and a superconductor spin transport in the limit of DC
conductivity, ω-0, where σðωÞ tends to infinity in this limit of ω.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Frustrated spin systems have been object of intense research in
the recent years [1] where the competitive interactions in quantum
magnetic systems especially on a honeycomb lattice have much
interest [1–18]. The main effects of frustrating interactions, in the
neighborhood of a Neel state, are the increase of the coupling and
the decrease of the spin-wave velocity. For values of J2 that are
sufficiently large, the dimensionless coupling constant will become
larger than the critical value. Consequently, there must be a critical
value of next nearest neighbor coupling, of strength J2c, beyond
which the long-range Néel order is destroyed. This theory then
predicts that for one J2r J2c , the system becomes a quantum
paramagnet. It is also clear that if J2 become large enough a new
form of long-range order should be found, if J244 J2c a Néel like

state but with wave vector Q
!¼ ðπ;0Þ or ð0;πÞ is favored, instead of

the usual Q
!¼ ðπ;πÞ ordered state. This Néel state is anti-

ferromagnetic along the x-axis but ferromagnetic along the y-axis.
This form of antiferromagnetism occurs, for instance, in the ion
pnictide materials, which are also high-temperature super-
conductors [19].

Besides the mathematical beauty of the Kitaev model, recent
studies were motivated by its possible relevance for degenerate
orbital systems with strong spin–orbit coupling such as layered
iridates Na2IrO3 and Li2IrO3. These applications require to consider
the extension, namely the Kitaev–Heisenberg model on honey-
comb lattice, which reveals in its phase diagram apart of a liquid
phase also several ordered (e.g. stripe or zig-zag) phases. These
phases are states of matter characterized by decay of the spin–spin

correlations functions in the form of the power-law and a zero
local magnetization, where such properties occur at the zero
temperature, where the disorder is derived from quantum fluc-
tuations [1].

Recently there is an intense research about the quantum Hall
effect for spins and magnon spintronics [21–25]. In the study of
these effects often only the sign differences between related
quantities like magnetic fields and generated spin and charge
currents are determined. The spin transport properties in the spin
systems have been studied theoretically by Sentef et al. [26] who
have analyzed the spin transport in the easy-axis Heisenberg
antiferromagnetic model in two and three dimensions, at T¼0.
Damle and Sachdev [27] have treated the two-dimensional case
using the non-linear sigma model in the gapped phase. Pires and
Lima [28–30] treated the two-dimensional easy plane Heisenberg
antiferromagnetic model. Lima and Pires [31] studied the spin
transport in the two-dimensional anisotropic XY model using the
SU(3) Schwinger boson theory in the absence of impurities, Lima
[32] has studied the case of the Heisenberg antiferromagnetic
model in two dimensions with Dzyaloshinskii–Moriya interaction.
Chen et al. [33] analyzed the effect of spatial and spin anisotropy
on spin conductivity for the S¼1/2 Heisenberg model on a square
lattice and more recently, Kubo et al. [34] studied the spin con-
ductivity in two-dimensional non-collinear antiferromagnets at
T¼0 using spin wave theory and Lima et al. [35] have studied the
spin transport in the site diluted two-dimensional anisotropic
Heisenberg model in the easy plane, using the self-consistent
harmonic approximation.
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The aim of this paper is to study the spin transport in the two-
dimensional anisotropic frustrated Heisenberg model on a hon-
eycomb lattice using the SU(3) Schwinger's boson approximation.
Recently, the critical properties of this model were studied using
this method in [37]. This work is divided in the following way. In
Section 2, we discuss the properties of the model, in Section 3, we
present the SU(3) Schwinger boson formalism, in Section 5 we
develop the Kubo formalism of the linear response to calculate the
spin conductivity of this model, in Section 5 is dedicated to our
conclusions and final remarks.

2. The model

The model that we are interested is represented in Fig. 1 and is
defined by the following Hamiltonian:

H¼
X

o i;j4

J1ðSi � SjÞþ
X

oo i;j44

J2ðSi � SjÞþD
X
i

ðSzi Þ2: ð1Þ

where 〈i; j〉 stands for the sum over nearest neighbors and 〈〈i; j〉〉,
mean sum on next nearest neighbors. We consider the value of
spin S¼1. Frustration here is due to the competition between the
nearest neighbors and the next nearest neighbors, coupling J1 and
J2. For sufficiently large values of anisotropies, the system becomes
a quantum paramagnet [37,39–41]. The anisotropy forces each
spin to be in the nonmagnetic state. The ground state has no long-
range magnetic order and there is a finite gap to spin excitations.
Decreasing D, the energy gap decreases and goes to zero at a cri-
tical Dc, where a quantum phase transition takes place. For DrDc

and positive, the system is in a gapless phase, that is ordered at
T¼0 in the non-frustrated case.

3. Method

The SU(3) Schwinger boson formalism has been derived to
treat systems with single ion anisotropy by Papanicolau [39] being
a generalization of the SU(2) formalism. In this formalism we

choose the basis:

jx〉¼ iffiffiffi
2

p ðj1〉�j �1〉Þ; jy〉¼ 1ffiffiffi
2

p ðj1〉þj �1〉Þ; j z〉¼ � ij0〉

where jn〉 are eigenstates of Sz. The spin operators are written via a
set of three boson operators tα ðα¼ x; y; zÞ defined as [37]

jx〉¼ t†x jv〉; jy〉¼ t†y jv〉; j z〉¼ t†z jv〉; ð2Þ
where jv〉 is the vacuum state. We also have the constraint con-
dition t†xtxþt†ytyþt†ztz ¼ 1.

In terms of the t operators we can write

Sx ¼ � iðt†ytz�t†ztyÞ; Sy ¼ � iðt†ztx�t†xtzÞ; Sz ¼ � iðt†xty�t†ytxÞ ð3Þ

the states t†x jv〉 and t†y jv〉, both consist of eigenstates Sz ¼ 71 and
have the average 〈Sz〉¼ 0. This property will preserve the disorder
of the ground state. To study disordered phases, it is convenient to
introduce other two bosonic operators u† and d† [39]

u† ¼ � 1ffiffiffi
2

p ðt†xþ it†yÞ; d† ¼ 1ffiffiffi
2

p ðt†x� it†yÞ; ð4Þ

and so

j1〉¼ u† jv〉; j0〉¼ t†z jv〉; j �1〉¼ d† jv〉; ð5Þ
with the constraint u†uþd†dþt†ztz ¼ 1. The spin operators can be
also written as [37]

Sþ ¼
ffiffiffi
2

p
ðt†zdþu†tzÞ; S� ¼

ffiffiffi
2

p
ðd†tzþt†zuÞ; Sz ¼ u†uþd†d: ð6Þ

Schwinger's boson formalism is a mean field approximation
that becomes accurate in the N-1 limit. For the SU(3) Schwinger
boson approach for spins S¼1, the order parameter has eight
components which correspond to the eight generators of the SU
(3) group [37]. Substituting Eq. (6) into the Hamiltonian (1) and
supposing that the tz bosons are condensed, i.e. 〈tz〉¼ 〈t†z〉¼ t, we
obtain [37]

H¼ J1
2

X
r;δ

½t2ðd†rdrþδþu†

rþδurþurdrþδþd†ru
†

rþδþh:c:Þ

þðu†
rur�d†rdrÞðu†

rþδurþδ�d†rþδdrþδÞ

J2
2

X
r;δ

½t2ðd†rdrþ2δþu†
rþ2δurþurdrþ2δþd†ru

†
rþ2δþh:c:Þ

þðu†
rur�d†rdrÞðu†

rþ2δurþ2δ�d†rþ2δdrþ2δÞþD
X
r
ðu†

rurþd†rdrÞ

�
X
r

μrðu†
rurþd†rdrþt2�1Þ; ð7Þ

where a temperature dependent chemical potential μr is intro-
duced to impose the local constraint S2r ¼ SðSþ1Þ ¼ 2. One solves
the Hamiltonian equation (7) using a mean-field approach,
replacing the local parameter μr by a single parameter μ and
making the mean field decoupling for the remaining operators as
in the Reference [37]. We make the Fourier transform of the
operators u and d and after this, we write the Hamiltonian in a
matrix form as [37,38]

H¼ 1
2

X
k

ψ †
kHααψ kþE0; ð8Þ

where ψ †
k ¼ u†

k d†k u�k d�k ~u†
k
~d
†

k ~u �k
~d �k

� �
, and

Hαα ¼ ðλþdÞ I 0
0 I

� �
þd

σx � σx 0
0 σx � σx

 !

þak
0 Iþσx � σx

0 0

� �
þan

k

0 0
Iþσx � σx 0

 !
; ð9Þ

where I is the 4�4 identity matrix, 0 is the 4�4 zero matrix and
σγ; γ ¼ x; y; z are the Pauli matrixes that satisfy the rules of

Fig. 1. Representation of the two-dimensional anisotropic frustrated Heisenberg
model on a honeycomb lattice with the nearest neighbors and the next nearest
neighbors interactions J1 and J2.

L.S. Lima / Solid State Communications 237-238 (2016) 19–2320



Download English Version:

https://daneshyari.com/en/article/1591217

Download Persian Version:

https://daneshyari.com/article/1591217

Daneshyari.com

https://daneshyari.com/en/article/1591217
https://daneshyari.com/article/1591217
https://daneshyari.com

