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a b s t r a c t

We report a theoretical study of spin-dependent transport in a magnetic nanostructure, which can be
experimentally realized by depositing a ferromagnetic metal (FM) stripe and a Schottky metal (SM)
stripe on the top and at the bottom of the semiconductor heterostructure. Theoretical analysis reveals
that the intrinsic symmetry in a single FM-stripe magnetic system can be broken by the SM stripe placed
at the bottom of the heterostructure, and thus a sizeable spin polarization effect appears. Numerical
calculation shows that not only amplitude of the spin polarization but also its sign varies with the width
and/or the position of the SM stripe.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

How to spin polarize electrons into semiconductor materials
has attracted much interest as the emerging research area of
spintronics utilizes the spins of the electron to store and carry
information [1]. So far, many alternative schemes have been pro-
posed both theoretically and experimentally [2]. One of them is to
exploit the magnetic nanostructure [3], which is experimentally
realized by confining the motion of the two-dimensional electron
gas (2DEG) (usually formed in a modulation-doped semiconductor
heterostructure) with an inhomogeneous magnetic field on the
nanometer domain, e.g., depositing nanosized ferromagnetic (FM)
stripes on top of a semiconductor heterostructure [4]. In the
magnetic nanostructure, there exists a precious magnetic field
distribution, which can induce the spin splitting by the Zeeman
interaction between the magnetic field and the electron-spins.
Many magnetic nanostructures have been exploited to serve
as spin filters for spintronics applications; see Refs. [5–12] for
example.

A simple, experimentally attractive proposal for a spintronics
device is to exploit one single FM stripe with the horizontal
magnetization, deposited on the top of the semiconductor het-
erostructure. This device has been investigated widely [5,13–16],
and many interesting results have been obtained by numerical
calculations. However, no spin filtering can occur in this device

[17,18] due to the antisymmetric magnetic profile and the sym-
metric magnetic vector potential pertaining to the center of this
device, also referred to as an intrinsic symmetry [19]. In order to
break such a symmetry in this device, Zhai et al. [20] proposed to
place a Schottky metal (SM) stripe parallel to the FM stripe on top
of the semiconductor heterostructure. Thereby, a sizeable spin
polarization effect appears and this device can be used as a spin
filter. Lu et al. [21] proposed to add another FM stripe with in-
plane magnetization at the bottom of the semiconductor hetero-
structure, which gives rise to two δ-function magnetic barriers
with nonidentical magnetic strength. As a result of this, the
intrinsic symmetry is broken and this device shows up a con-
siderable spin filtering.

Very recently, a tunable δ-potential was doped into the device
by the atomic layer doping technique [22], and such a δ-doping
was demonstrated to break the intrinsic symmetry. Thus, a
structurally controllable spin filter was proposed for spintronics
applications [23]. In this work, we assume an SM stripe deposited
at the bottom of the semiconductor heterostructure in the device
and consider its effect on spin transport for the electron across the
device. Theoretical analysis reveals that the inclusion of such an
SM stripe also can break the intrinsic symmetry in the device and
leads to an obvious spin filtering. Numerical calculations for the
InAs material show that the degree of spin filtering depends
strongly on the width and/or the position of the SM stripe, which
implies that the optimal spin polarization can be achieved by a
proper SM stripe. Such a device can serve, therefore, as a spin
filter.
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2. Model and theoretical method

Our considered device is described in Fig. 1(a), where an FM

stripe with a horizontal magnetization (M
!

0) and an SM stripe
under an applied negative voltage (�Vg) are deposited [24] on the
top and at the bottom of the semiconductor heterostructure, and L
and d represent the width of the FM and SM stripes, respectively.
Fig. 1(b) is the model of the device, where the center of the SM
stripe is located at the coordinate x0. The magnetic profile induced
by the magnetized FM stripe can be approximated as [13] two
antiparallel δ-function magnetic barriers (7B) for a small distance
between the FM stripe and the 2DEG, and can be usually viewed as
homogeneous along the y-direction and varies merely in the x-

axis, i.e., B
!¼ BzðxÞẑ with

BzðxÞ ¼ BB0 δðxþL=2Þ�δðx�L=2Þ� �
; ð1Þ

where B is the magnetic field strength with the unit B0, and L
stands for the width of the FM stripe. The corresponding magnetic

vector potential can be given, in Landau gauge, by A
!¼ ½0;AyðxÞ;0�,

whose y-component is

AyðxÞ ¼ BℓBΘðL=2� xj jÞ; ð2Þ
where ℓB is the magnetic length and ΘðxÞ is the Heaviside step
function. Applying a negative voltage to the SM stripe will create
an electric potential (U(x)) acting on the 2DEG, which can be
regarded as [15] a rectangular electric-barrier (U).

The Hamiltonian describing such a 2DEG nanostructure in the
(x,y) plane can be written, within the single particle effective mass
approximation, as

H ¼ p2x
2mn

þ½pyþeAyðxÞ�2
2mn

þegnσℏ
4m0

BzðxÞþUðxÞ; ð3Þ

where mn, m0, gn and p!¼ ðpx; pyÞ are the effective mass, the free
mass in vacuum, the effective Landé factor and the momentum of
the electron, respectively, and σ ¼ þ1=�1 corresponds to spin-up/
spin-down electrons. Using the cyclotron frequency ωc ¼ eB0=mn

and the magnetic length ℓB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB0

p
, all the relevant quantities

can change to the dimensionless form, e.g., x-xℓB;B-BB0, and
AyðxÞ-B0ℓBAyðxÞ.

Because of the invariant motion of the electron along the y-
direction in a magnetic nanostructure, the solution of the sta-
tionary Schrödinger equation, HΨ ðx; yÞ ¼ EΨ ðx; yÞ, has the form
Ψ ðx; yÞ ¼ψ ðxÞexpðikyyÞ, where ky is the longitudinal wave-vector,
and the wave function in the x-direction, ψ ðxÞ, complies with the

reduced one-dimensional (1D) Schrödinger equation:

d2

dx2
þ2½E�Ueff ðx; ky;U;σÞ�

( )
ψ ðxÞ ¼ 0; ð4Þ

where Ueff ðx; ky;U;σÞ ¼ ½kyþAyðxÞ�2=2þmngnσBzðxÞ=4m0þU is the
effective potential for the electron in the device. This effective
potential depends on the magnetic profile BzðxÞ, the longitudinal
wave-vector ky and the spins σ. In fact, it is the dependence of the
Ueff on the σ that results in the possibility to spin-polarize elec-
trons into the semiconductor material by using this device.

We can solve analytically the 1D Schrödinger equation (4) with
the help of the transfer-matrix method [25]. Without any loss of
generality, the wave functions in incoming and outgoing regions
can be assumed as ψ inðxÞ ¼ expðiklxÞþrexpð� iklxÞ for xo�L=2

and ψ outðxÞ ¼ t expðikrxÞ for x4L=2, respectively, where kl ¼ kr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�k2y

q
and t/r is the transmission/reflection amplitude. In the

device region (�L=2oxoL=2), the wave function can be written
as the linear combination of the plane waves. By matching these
wave functions according to their continuity at the boundaries, we
readily obtain the transmission coefficient by means of the
transfer-matrix technique as

TσðE; kyÞ ¼
4klkr

P2þQ2; ð5Þ

where P ¼ klm11� mngnσB
2m0

m12þm22

� �
kr and Q ¼ mngnσB

2m0
m11þklkrm12

�m21Þ with

M¼
m11 m12

m21 m22

 !
¼

cos k1½x0þðL�dÞ=2� � sin k1 ½x0 þðL�dÞ=2�
k1

k1 sin k1½x0þðL�dÞ=2� cos k1½x0þðL�dÞ=2�

 !

cos k2d � sin k2d
k2

k2 sin k2d cos k2d

 !

cos k3½ðL�dÞ=2�x0��mngnσB
2m0k3

sin k3½ðL�dÞ=2�x0� � sin k3 ½ðL�dÞ=2�x0 �
k3

k3 sin k3½ðL�dÞ=2�x0�þmngnσB
2m0

cos k3½ðL�dÞ=2�x0� cos k3½ðL�dÞ=2�x0�

0
@

1
A: ð6Þ

Here, transverse wave-vectors are k1 ¼ k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�ðkyþBÞ2

q
and

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE�UÞ�ðkyþBÞ2

q
. Note that, the wave vectors kl and kr

must be real, but the ki ði¼ 1;2;3Þ may be either real or imaginary.
When they are imaginary the sin ðkiaÞ and cos ðkiaÞ change to sinh
ðkiaÞ and cosh ðkiaÞ, respectively.

Once the transmission coefficient TσðE; kyÞ is known, the spin
polarization of the transmitted electron can be obtained by [7]

PT ðE; kyÞ ¼
T↑ðE; kyÞ�T↓ðE; kyÞ
T↑ðE; kyÞþT↓ðE; kyÞ

; ð7Þ

where the T↑ðE; kyÞ and T↓ðE; kyÞ are the coefficients for spin-up and
spin-down electrons, respectively. On the other hand, the spin-
electronic ballistic conductance at zero temperature can be cal-
culated by the well-known Landaur–Büttiker formula [26]

GσðEF Þ ¼ G0

Z þ π
2

� π
2

TσðEF ;
ffiffiffiffiffiffi
2E

p
sinφÞ cosφ dφ; ð8Þ

where φ is the incident angle of the electron with respect to the x-
axis, EF is the Fermi energy, and G0 ¼ e2mnvFLy=h

2 with the Fermi
velocity vF and the length of the device in the y-direction Ly,
respectively. The degree of the electron-spin polarization can be
defined by the relative difference or the relative spin conductance
excess [13],

PGðEF Þ ¼
G↑ðEF Þ�G↓ðEF Þ
G↑ðEF ÞþG↓ðEF Þ

; ð9Þ

where G↑ðEF Þ and G↓ðEF Þ are conductance for spin-up and spin-
down electrons, respectively.
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Fig. 1. (Color online) (a) Schematic illustration of the spin filter and (b) its model.
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