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a b s t r a c t

Oscillating thermodynamic quantities of diamagnetic materials, specially graphene, have been attracting
attention of the scientific community due to the possibility to experimentally map the Fermi surface of
the material. These have been the case of the de Haas–van Alphen and Shubnikov–de Haas effects, found
on the magnetization and electrical conductivity, respectively. In this direction, managing the thermo-
dynamic oscillations is of practical purpose, since from the reconstructed Fermi surface it is possible to
access, for instance, the electronic density. The present work theoretically explores the quantum oscil-
lations of electrical and thermal conductivities of a monolayer graphene under a crossed magnetic and
electric fields. We found that the longitudinal electric field can increase the amplitude of the oscillations
and this result is of practical and broad interest for both, experimental and device physics.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The study of graphene is an actual problem of experimental and
theoretical condensed matter physics [1], since their two-dimensional
lattice and Dirac-like electronic spectrum lead to unique physical
properties. As a consequence, emerging phenomena, such as the
quantum Hall effect [1–3] and optical absorption [4], just to name
some, make graphene promisingmaterials for modern nanoelectronics.

A special attention shall be given to the oscillatory thermo-
dynamic quantities also found on graphene, like the de Haas–van
Alphen effect, that rules the oscillations on the magnetization [5,6],
the Shubnikov–de Haas effect, that, on its turn, rules the oscillations
on the conductivity [7] and, more recently, the oscillating huge and
manageable magnetocaloric effect [8–11]. Theoretical and experi-
mental works have been done on this direction and these are
indeed of practical interest, since from these oscillations it is pos-
sible to access and built up the Fermi surface of the material [12].

The key rule to all of those interesting phenomena is the
anomalous Landau Levels (LLs) due to an applied magnetic field;
and some works had shown [13–15] that a crossing magnetic and
electric fields under the graphene sheet indeed enhance and
control a plenty of those emerging phenomena. In this direction,
the present work focuses to investigate the oscillations on the
electrical and thermal conductivities of a graphene sheet sub-
mitted to these crossed fields.

Some well established quantities had been used along the
present work, like the energy spectrum of a graphene under a

crossed electric E
!¼ ðE;0;0Þ and magnetic H

!¼ ð0;0;HÞ fields, that
can be written as:

ϵn;py ¼ sgnðnÞℏΩc
ffiffiffiffiffiffiffiffi
jnj

p
þv0py; ð1Þ

where

Ωc ¼ ð1�β2Þ3=4
ffiffiffi
2

p
vF l

�1
H ð2Þ

rules the LLs separation, β¼ v0=vF , v!0 ¼ cEŷ=H is the average
electron drift velocity perpendicular to the EH plane, lH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eH

p
is the magnetic length, vF � 108 cm=s is the Fermi velocity and n is
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an integer. This result can be derived considering both approaches,
Dirac formalism [14,15] and the quasi-classical one [13]. The che-
mical potential had also been used along the present evaluation,
and it can be determined from the condition

N¼ �1
S

∂Ω
∂μ

� �
H;T

ð3Þ

where N is the concentration of carriers and S is the graphene area.
Taking advantage of the results in reference [16] and neglecting

the oscillating part of thermodynamic potential, it is possible to
write:

μ¼ vFℏð1�β2Þ3=4
ffiffiffiffiffiffiffi
πN

p
ð4Þ

Note thus that the chemical potential also depends on the longitudinal
electric field. The condition β¼ 1 corresponds to the regime in which
the electron drift velocity is equal to Fermi velocity; and the electron
trajectory on the reciprocal space is no longer closed. In other words,
for this critical condition, the orbital motion vanishes, the quantization
disappears and the Landau structure collapses.

Next section describes the electrical conductivity, while the
following, the thermal one. In few words, we have shown that it is
possible to control the quantum oscillations of these conductivities
by managing the electric field; and these findings are helpful to
guide further experimental works.

2. Electrical conductivity

In order to achieve the oscillations on the electrical conductivity,
we have used Kubo's formula, focusing to this purpose on the real
part of diagonal conductivity. However, under a quantized magnetic
field, Kubo's formula had been generalized by Gorbar et al. [17];
and, for the present case of crossed fields, the conductivity reads as:

σðμ; T ; EÞ ¼ 1
S

X
py

Z 1

�1
dϵ �∂f

∂ϵ

� �
Aðϵ�v0pyÞ ð5Þ

where

f ðϵÞ ¼ 1
exp½ðϵ�μÞ=kBT �þ1

ð6Þ

is the Fermi–Dirac distribution,

AðϵÞ ¼ 4v2Fℏe
2Γ2

π

X
n

ϵ2þϵ2nþΓ2
� �

ϵ2�ϵ2n�Γ2
� �2

þ4ϵ2Γ2
� �

�
ϵ2þϵ2nþ1þΓ2
� �

ϵ2�ϵ2nþ1�Γ2
� �2

þ4ϵ2Γ2
� �; ð7Þ

ϵn ¼ ϵn;py �v0py and, finally, Γ is the scattering energy.
Firstly, let us focus our attention to Eq. (7). From the Poisson

summation formula

X1
n ¼ 0

FðnÞ ¼ Fð0Þ
2

þ
Z 1

0
FðxÞ dxþ2 Re

X1
k ¼ 1

Z 1

0
FðxÞei2πkx dx

( )
; ð8Þ

Eq. (7) can be represented as a sum of non-oscillating and

oscillating parts:

AðϵÞ ¼ AnoðϵÞþAoscðϵÞ ð9Þ

where the former has two contributions: Ano1ðϵÞ and Ano2ðϵÞ, due
to the first and second terms of Eq. (8), respectively. For the sake of
clearness, the contribution to the conductivity due to Ano1ðϵÞ will
be addressed in Appendix A, since this term is much smaller than
the other two and, consequently, negligible. Thus, considering
y¼ ℏ2Ω2

c ðx�μ=ΓÞ, the second term of AnoðϵÞ can be written as:

where the lower limit of the integral equates to �1, considering
μ⪢Γ (see references [7,17] for further details on this integral limit).
The above integrand in the complex plane has two poles of first
order in the upper half plane; and using the theory of residues, we
obtain the final expression for the second term of the non-
oscillating contribution to AðϵÞ:

Ano2ðϵÞ ¼
8ec

ð1�β2Þ3=2H
jϵjΓ ϵ2þΓ2

� �
ℏ4Ω4

c þð4ϵΓÞ2
h i ð11Þ

The oscillating contribution to AðϵÞ shall be achieved con-
sidering a similar evaluation as above; and after some steps of
calculus we obtain:

AoscðϵÞ ¼ 16ec

ð1�β2Þ3=2H
jϵjΓðϵ2þΓ2Þ
ℏ4Ω4

c þð4ϵΓÞ2
h i

�
X1
k ¼ 1

cos
2πk

ℏ2Ω2
c

ðϵ2�Γ2Þ
" #

exp � 2πk

ℏ2Ω2
c

2jϵjΓ
 !

ð12Þ

Due to the Poisson summation formula, AðϵÞ could be written
with two terms: a non-oscillatory AnoðϵÞ and an oscillatory AoscðϵÞ.
Since the electrical conductivity (Eq. (5)) depends on AðϵÞ, it is
straightforward to see that the conductivity also has two con-
tributions: a non-oscillatory σnoðμ; T ; EÞ and an oscillatory
σoscðμ; T ; EÞ; in such way we can write for the total electrical con-
ductivity:

σðμ; T ; EÞ ¼ σnoðμ; T ; EÞþσoscðμ; T ; EÞ ð13Þ
It is important to remember that the former term has two con-
tributions; and one of these (σno1) is described in Appendix A,
since it is negligible in comparison to the other term.

From now on, let us focus our attention on the evaluation of
these two terms: σno � σno2 and σosc. First, Eq. (5) shall be sim-
plified; and, to go further, let us consider:

X
py

¼ Ly
πℏ

Z pymax

0
dpy; ð14Þ

where pymax is determined from the condition [15]:

0ox¼ c
eH

pyoLx; ð15Þ

that leads to pymax ¼ eHLx=c.
Considering the low temperature limit μ⪢kBT , as well as Eq. (11)

into Eq. (5), we obtain:

σno2ðμ; T ; EÞ ¼
8ec

ð1�β2Þ3=2πℏHLx

Z pymax

0
dpy

Γðμ�v0pyÞ ðμ�v0pyÞ2þΓ2
h i

ℏ4Ω4
c þ½4Γðμ�v0pyÞ�2

n o
ð16Þ

Ano2ðϵÞ ¼
2eΓ2

π
c

ð1�β2Þ3=2H

Z 1

�1
dy

ϵ2þyþℏ2Ω2
c
μ
Γ

þΓ2
h i

ϵ2þyþℏ2Ω2
c
μ
Γ

þ1
� �

þΓ2
h i

ϵ2�y�ℏ2Ω2
c
μ
Γ

�Γ2
h i2

þ4ϵ2Γ2
	 


ϵ2�y�ℏ2Ω2
c
μ
Γ

þ1
� �

�Γ2
h i2

þ4ϵ2Γ2
	 
 ð10Þ
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