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a b s t r a c t

We considered the dynamics of an initially localized wave packet in one-dimensional disordered chains
under the effect of electron–phonon interaction and an acoustic wave's pumping. Our procedure consists
of a quantum mechanics formalism for the electron transport and a classical Harmonic Hamiltonian
model for lattice vibrations. We also introduce an electron–lattice interaction by assuming electron
energy transfer between neighboring atoms as an exponential function of its effective distance. In our
model, the electron was initially localized at the first site of the chain and we also added pumping of an
acoustic wave at the zeroth site. We solved numerically the dynamic equations for the electron and
lattice performing calculations for the spreading of an electronic wave-packet. We report numerical
evidences with regard to the sub-diffusive transport.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the end of 1950s P.W. Anderson and co-workers demon-
strated that extended eigenstates are completely absent in low-
dimensional systems with uncorrelated disorder [1–7]. One of its
consequences result in the saturation of the width of an initially
localized wave-packet at a finite region around the initial position
in the long time limit. Some years ago, it was demonstrated that
the competition between nonlinearity and disorder plays an
interesting role within the electronic transport [8–36]. By using a
wide range of techniques, authors had shown that, even in the
presence of disorder, nonlinearity can promote the appearance of a
counter-intuitive electronic transport. From an experimental point
of view, within the context of coupled waveguides patterned on an
AlGaAs substrate, the presence of nonlinearity enhances the
localization of linear modes whereas it induces the delocalization
of nonlinear modes [13]. It is also interesting to emphasize the
results of M.G. Velarde and co-workers [22–33] on the possibility
of electronic transport mediated by a new type of electron–
soliton pair.

Within the context of electron transport mediated by non-
linearity or electron–phonon interaction, the problem involving
surface acoustic wave (SAW) has attracted an intense interest. In

general lines, SAW has been used to control electronic dynamics in
nano-devices. One of the best observations of electronic transport
induced by SAW was experimentally done in Ref. [37]. The authors
applied a surface acoustic wave through a GaAs–AlGaAs two-
dimensional electron gas. In Ref. [38], an interesting investigation
of the electronic flux mediated by high frequency (SAW) in GaAs–
AlGaAs heterostructures was reported. In a recent excellent
experiment [39], the authors moved a single electron along a wire
to mimic a kind of ping-pong behavior. Moreover, it was pointed
out that “controlled motion” might be used within the framework
of quantum computing for moving a quantum ’bit’ between two far
from places [39]. The experimental setup consisted of trapping a
single electron in a quantum dot and moved this electron around a
channel by using a SAW. The authors obtained up to 60 shots with
good quality. The possibility of using SAW to move electrons and
construct quantum bits has attracted an intense interest [40–43].

We considered the dynamics of an initially localized wave
packet in one-dimensional disordered chain under the effect of
electron–phonon interaction and an acoustic wave's pumping. Our
formalism consists of a quantum mechanics formalism for the
electron transport and a classical harmonic Hamiltonian model for
the lattice vibrations. We also introduce an electron–lattice inter-
action by considering electron energy transfer between neigh-
boring atoms as an exponential function of its effective distance. In
our model we made the electron initially localized at the first site
of the chain and we added the pumping of an acoustic wave at the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ssc

Solid State Communications

http://dx.doi.org/10.1016/j.ssc.2015.12.004
0038-1098/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: fidelis@fis.ufal.br (F.A.B.F.de. Moura).

Solid State Communications 229 (2016) 22–27

www.sciencedirect.com/science/journal/00381098
www.elsevier.com/locate/ssc
http://dx.doi.org/10.1016/j.ssc.2015.12.004
http://dx.doi.org/10.1016/j.ssc.2015.12.004
http://dx.doi.org/10.1016/j.ssc.2015.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2015.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2015.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2015.12.004&domain=pdf
mailto:fidelis@fis.ufal.br
http://dx.doi.org/10.1016/j.ssc.2015.12.004


zero site. We solved numerically the dynamic equations for the
electron and lattice performing calculations for the spreading of
the electronic wave-packet. We report numerical evidences of the
sub-diffusive transport.

2. Model and formalism

In our work the formalism consists of two Hamiltonians: the
quantum electronic and lattice vibration dynamics. The electron
Hamiltonian (He) and the lattice Hamiltonian Hlattice are described,
respectively, by

He ¼
XN
m ¼ 1

ϵmf
†
mfmþ

XN
m ¼ 1

τmþ1;mðf †mþ1f mþ f †mfmþ1Þ ð1Þ

and

Hlattice ¼
p2m
2Mm

þ1
4

XN
m ¼ 1

ðxmþ1�xmÞ2þðxm�xm�1Þ2
h i

; ð2Þ

where ϵm represents the on-site disorder distribution uniformly
chosen within the interval ½�W=2;W=2�, τmþ1;m represents the
energy transfer between the nearest sites, Mm represents the
disordered distribution of masses and xm and pm ¼Mm _xm repre-
sents the atomic position and the momentum of the mth site. Mm

is generated by using the following procedure: Mm ¼ eðηmÞ where
ηm are random numbers uniformly distributed within a range
½�W=2;W=2�. Electron–lattice interaction will be constructed by
considering the electronic hopping term as τmþ1;m ¼ �
e½�αðxmþ 1 � xmÞ� where α represents, in units of the lattice spacing,
the electron–phonon term. For small relative displacement we
recover the Su, Schrieffer, Heeger approximation
τmþ1;m � �½1�αðxmþ1�xmÞ�. The time-dependent wave function
ΦðtÞ ¼P

mcmðtÞjm〉 is obtained by numerical solution of the time-
dependent Schrödinger equation. The Wannier amplitudes evolve
in time according to the time-dependent Schrödinger equation as
ðℏ¼ 1Þ

i
dcmðtÞ
dt

¼ ϵmcmðtÞ�e½�αðxmþ 1 �xmÞ�cmþ1ðtÞ�e½�αðxm � xm� 1Þ�cm�1ðtÞ:
ð3Þ

The classical equations governing the lattice vibrations may be
written as

Mm
d2xm
dt2

¼ xmþ1�2xmþxm�1�α e½�αðxmþ 1 � xmÞ�ðcnmþ1ðtÞcmðtÞ
�

þcmþ1ðtÞcnmðtÞÞ�e½�αðxm � xm� 1Þ�ðcnmðtÞcm�1ðtÞ
þcmðtÞcnm�1ðtÞÞg: ð4Þ

We impose the electron initially localized at site m¼1, i.e.
jΦðt ¼ 0Þ〉¼P

mcmðt ¼ 0Þjm〉, where cmðt ¼ 0Þ ¼ δm;1. For t¼0 we
set xmðt ¼ 0Þ ¼ _xmðt ¼ 0Þ ¼ 0 for m within the interval ½1:N�. Fur-
thermore, we consider the pumping of an acoustic wave at the
extreme left side of the chain (i.e. at the site m¼0) given by the
equation

x0 ¼ A0 cos ðωtÞ; ð5Þ
where ω represents the frequency of the acoustic wave. We solve
the set of quantum/classical coupled equations using combined
high-order Taylor expansion and a second order finite-difference
procedure. The former is employed to obtain a numerical solution
of Schrödinger equation (Eq. (3)) via series expansion of the evo-
lution operator UðΔtÞ [44]:

UðΔtÞ ¼ expð� iHeΔtÞ ¼ 1þ
Xno

l ¼ 1

ð� iHeΔtÞl
l!

ð6Þ

where He is the one electron Hamiltonian. The wave function at
time Δt is given by jΦðΔtÞ〉¼ UðΔtÞjΦðt ¼ 0Þ〉. The method can be
used recursively to obtain the wave-function at time t. Classical
equations (Eq. (4)) are solved by using the latter approach on a
discretized time. We write the second time derivative in Eq. (4) as

d2xm
dt2

� xmðtþΔtÞ�2xmðtÞþxmðt�ΔtÞ
ðΔtÞ2

ð7Þ

Applying the previous formula to the classical equation we derive
the following equation which can be solved numerically:

xmðtþΔtÞ � 2xmðtÞ�xmðt�ΔtÞþðΔtÞ2
Mm

xmþ1ðtÞ�2xmðtÞ
�

þxm�1ðtÞ�α½e½�αðxmþ 1ðtÞ�xmðtÞÞ�ðcnmþ1ðtÞcmðtÞ
þcmþ1ðtÞcnmðtÞÞ
�e½�αðxmðtÞ� xm� 1ðtÞÞ�ðcnmðtÞcm�1ðtÞþcmðtÞcnm�1ðtÞÞ�g; ð8Þ

Our calculations are made with stepΔt ¼ 1� 10�3 and the sum of
Eq. (6) is truncated at no¼10. Then we could keep the wave
function norm within the following numerical tolerance: j1�P

m

j cmðtÞj 2 jo10�10 along the entire time interval ðtmax � 3� 104Þ.
After solving the dynamics equations, we computed some typical
quantities which describe electronic transport on this disordered
model, namely, mean position (centroid) and mean square dis-
placement defined as [34–36]

〈mðtÞ〉¼
X
m

ðmÞj cmðtÞj 2 ð9Þ

and

σðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

ðm� 〈mðtÞ〉Þ2 j cmðtÞj 2
r

; ð10Þ

respectively. The centroid for a given time t represents the mean
position of the electron using the center of a self-expanded chain
as the origin. The mean square displacement provides an estimate
of the size of the wave packet at time t.

3. Results and discussion

We considered the electron fully localized at the left side of the
chain (i.e. fcmðt ¼ 0Þ ¼ δm;1g) and the pumping of an acoustic wave
at the site m¼0 i.e. x0 ¼ A0 cos ðωtÞ, where ω represents the fre-
quency of the acoustic wave. We set W¼2 for all calculations
obtained in Figs. 1–3. Due to the presence of a mass disordered
distribution in our model, we adopted pumping at low-
frequencies ω⪡1. High frequencies do not propagate easily
within disordered harmonic chains [45]. In our calculations we
have used the self-expanding chain to minimize border effects;
whenever the probability of finding the electron or the atomic
vibration at the right side of the chain exceeded 10�20, 10 new
sites were added to the right side. Numerical convergence was
ensured by checking the conservation of the norm of the wave
packet at every time step; our results provide j1�P

m j cmðtÞj 2 jo
10�10 for all times considered. In Fig. 1 we show results of several
calculations for ω¼ 0:1;0:2;0:3 and α¼ 0 up to 0.5. For α¼ 0 we
detected clearly that the electron remains localized close to initial
position. We emphasize that in the absence of electron–phonon
coupling ðα¼ 0Þ our present model converged to the standard
one-dimensional Anderson model with diagonal disorder of the
same order of the bandwidth. Therefore, in this case the electronic
behavior is characterized by exponentially localized eigenstates,
thus promoting the saturation of σ and 〈mðtÞ〉 at long time limit.
For α40 we observed that the square root of the mean square
displacement and the mean position increases with time. We also
noticed that σp tζ with ζ ¼ 0:4�0:45 i.e., a sub-diffusive behavior.
The calculations in Fig. 1 suggest a disruption of the Anderson
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