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a b s t r a c t

The low-frequency optical absorption properties of graphene nanoribbons in a composite magnetic field
are investigated by using the gradient approximation. The spectral function exhibits symmetric delta-
function like prominent peaks structure in a uniform magnetic field, and changes to asymmetric square-
root divergent peaks structure when subjecting to a composite field. These asymmetric divergent peaks
can be further classified into principal and secondary peaks. The spectral intensity and frequency of the
absorption peaks depend sensitively on the strength and modulation period of the composite field. The
transition channels of the absorption peaks are also analyzed. There exists an optical selection rule
which is caused by the orthogonal properties of the sublattice wave functions. The evolution of the
spectral frequency of the absorption peaks with the field strength is explored.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene is an one-atom thick layer of carbon atoms packed in a
two-dimensional (2D) honeycomb lattice, and it can be regarded as a
single atomic plane extracted from bulk graphite. The honeycomb
lattice is a bipartite lattice consisting of two interpenetrating triangular
sublattices, designated A and B. Each carbon atom is tied to its three
nearest neighbors via σ bonds. Graphene has unusual electronic
properties due to its unique energy dispersion, that is, its energy
subbands are linear near the chemical potential (μ) and intersect at
the Dirac point. From the viewpoint of its electronic properties,
graphene is a zero-gap semiconductor with vanishing density of states
at the chemical potential. With zero bandgap, graphene is not suitable
for digital logic applications [1]. However, it is possible to open a
bandgap by cutting 2D graphene into quasi one-dimensional (Q1D)
graphene nanoribbons (GNRs) or by biasing bilayer graphene [2].
Graphene nanoribbons can be fabricated by plasma etching of masked
graphene sheets [3], longitudinal unzipping of carbon nanotubes [4],
or chemical vapor deposition [5]. Zigzag and armchair nanoribbons
(ZGNRs and AGNRs) are the two basic types of GNRs, classified by the
structure of their confining edges. Many studies of the electronic and
transport properties of GNRs have been performed [6–10].

When a uniform magnetic field is applied to a 2D graphene, it will
confine the electron motion and condenses the electron states into
dispersionless Landau levels (LLs) [11], which follow a simple relation

jEnc;v j ¼ ðℏvF=lBÞ
ffiffiffiffiffiffiffiffiffiffi
2nc;v

p
, where vF is the Fermi velocity, and nc;v is the

subband index. The magnetic length lB is given by
ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
, and a

typical value is lB � 46:9Å for B¼30 T. Given a graphene nanoribbon is
subjected to a uniform magnetic field, the carrier motion is restricted
by both the magnetic potential and the nanoribbon boundary. The
magnetic confinement will compete with the quantum confinement.
When the magnetic field is strong, the carriers are confined solely by
the magnetic potential, and quasi-Landau levels (QLLs) are formed.
Recently, a number of investigations have been devoted to the optical
properties of GNRs [12–16]. Liu and coworkers reported that the
optical response of GNRs can be significantly enhanced and tuned by
an applied magnetic field [12]. Raman spectroscopy measurements of
etched GNRs were performed by Bischoff et al. [13]. Hsu and Reichl
proposed a theory of optical transitions in GNRs [14]. The spin-
dependent exciton effects in ZGNRs were investigated by Lu et al.
[15]. Cordeiro and coworkers studied the optical dichroism in gra-
phene nanoribbons by using gauge model [16]. In realistic circum-
stances, GNRs may have edge reconstructions. Among them the most
important one is zz(57), a reconstruction of a zigzag edge where
hexagon carbon rings transforming into alternating pentagon-
heptagon carbon rings [17–20].

In this work, we study the electronic and optical properties of GNR
in a composite magnetic field, which consists of a uniform magnetic
field and a spatially-modulated magnetic field. A spatially modulated
magnetic field can be produced by putting an array of nanostructured
ferromagnetic strips [21] on top of the samples. The band structures
are calculated by employing the tight-binding method, and the
spectral function AðωÞ is obtained by using the gradient approxima-
tion [22,23]. The rest of the paper is organized as follows. The
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computational models are introduced in Section 2, and the energy
dispersions and optical absorption spectra are discussed in Section 3.
In Section 4, the conclusion is given.

2. The Peierls tight-binding method and the gradient
approximation

The electronic properties of GNRs are briefly reviewed here.
The nanoribbon width is specified by Ny, the number of dimer
lines along the transverse ðŷÞ direction, and the actual width W is
given by ð3Ny�2ÞdCC=2, where dCC ¼ 1:42 Å is the C–C bond length.
Based on tight-binding calculations, zigzag GNRs are always
gapless due to the partial flat bands at the chemical potential
[24], while armchair GNRs can be either gapless or semiconduct-
ing, depending on Ny.

A schematic diagram of a zigzag GNR is given in Fig. 1. There are
2Ny carbon atoms in the unit cell, which is the dashed-line rectangle
indicated in Fig. 1. The single-orbital nearest-neighbor tight-binding
method is used to compute the electronic structure formed by the 2pz
orbitals. A composite magnetic field is a combination of a uniform

magnetic field B
!

0 ¼ B0ẑ and a spatially-modulated one B
!

m ¼ Bm

sin ð2πy=λÞẑ , where λ is the modulation period. In such field, the
Hamiltonian matrix element is

〈k∣H∣j〉¼ γ0exp i k
!� ð R!j� R

!
kÞþ i

e
ℏ
ΔG

� �
; ð1Þ

where j(k) stands for A or B site, and R
!

j is the position vector of the j

site. The π-bond hopping parameter between A and B atoms γ0 has the

value 2.598 eV. The vector potential A
!¼ B0xŷ�λBm cos ð2πy=λÞ=2πx̂

causes a Peierls phase ΔG¼ R R
!0

k

R
!0

j

A
!� dl. The modulation period λ is

in the unit of the nanoribbon width W.
The π-electronic wave function is the linear superposition of the

2Ny tight-binding functions. It is ψ c;v ¼ P2Ny

m ¼ 1 a
c;v
m ∣φm4 , where c and

v represent the conduction band and the valence band, respectively.
∣φm4 is the tight-binding function of the periodical 2pz orbitals in the
mth sublattice. In the subspace spanned by these tight-binding

functions, the Hamiltonian is a 2Ny � 2Ny Hermitian matrix. The
dangling bonds on the edge sites are assumed to be terminated by
hydrogen atoms, and they will not contribute to the electronic states
near the chemical potential. The energy dispersion Ec;vðk;nc;vÞ and the
wave function ψ c;vðk;nc;vÞ are obtained by diagonalizing the Hamilto-
nian matrix, where k is the wave vector in the unit π=

ffiffiffi
3

p
dcc .

When a GNR is subjected to an electromagnetic field, the
electrons are vertically excited from the occupied states to the
unoccupied states in the momentum space; that is, the initial and
final states have the same k. Based on Fermi's golden rule, the
optical absorption function is given by

AðωÞp
X

c;v;nc ;nv

Z
1stBZ

dk
2π

� Im
f ½Ecðk;ncÞ�� f ½Evðk;nvÞ�

Ecðk;ncÞ�Evðk;nvÞ�ω� iΓ

� �

� ψ cðk;ncÞ Ê � P
,

me

�������
�������ψ

vðk;nvÞ
* +�������

�������
2

; ð2Þ

where f is the Fermi–Dirac distribution function. P
!

stands for the
momentum operator, and me is the bare electron mass. The

electric polarization Ê is along x-axis. Γ¼0.001 γ0 is the phenom-
enological broadening parameter. The velocity matrix element

MvcðkÞ � 〈ψ cðk;ncÞ∣Ê � P!=me∣ψ vðk;nvÞ〉 determines the possible
transition channels. The gradient approximation [18,19] is used
to evaluate MvcðkÞ, and it is expressed as the first-order derivative

of the Hamiltonian matrix element
P2Ny

m;m0 ¼ 1 ðacm0 Þnavm∂Hm;m0
∂k .

3. Low-energy electronic properties and optical absorption
spectra

When a GNR is subjected to a uniform perpendicular magnetic
field B

!¼ B0ẑ , B0 ¼ 30 T, the energy dispersion is a hybrid of parabolic
and flat bands (Fig. 2a). The latter are the QLLs. Each subband is two-
fold degenerate, and the conduction and valence subbands are
symmetric with reference to the chemical potential μ¼ 0. The partial
flat bands at μ¼ 0 are due to the mixing of localized edge states and
Landau states. If a spatially-modulated magnetic field is superimposed
on the uniform field, the energy dispersion is altered significantly
(Fig. 2b). The band structure is now composed of partial flat bands at
μ¼ 0 and oscillatory parabolic subbands. The curvature of the
parabolic subbands increases with rising subband energy. The sub-
bands nearest to μ¼ 0 have the lowest curvature. Each parabolic
subband has one low-curvature concave downward central band-
edge state at kC, two high-curvature concave upward secondary band-
edge states at the left (kL) and right (kR) of kC. The subbands are left-
right asymmetric with reference to kC. The band-edge states at kC and
kL are the states when the carriers are located at the maximum
ðB¼ B0þBmÞ and minimum ðB¼ B0�BmÞ values of the composite
magnetic field, respectively. As Bm increases to 12 T, the band-edge
state energy shifts upward at kC and downward at kL, while their band
curvatures rise (Fig. 2c). A larger modulation amplitude Bm has
opposite effect on the band-edge state energy at kC and kL, but the
band curvature is determined by the field gradient ∇B. A larger Bm
leads to a larger ∇B at both kC and kL band-edge states. Furthermore,
the rising band curvature indicates that a composite magnetic field
with larger modulation amplitude has weaker capability to condense
the electronic states.

At a longer modulation period (λ¼1.5), the field varies more
slowly in space, and the band curvature is reduced due to the smaller
field gradient (Fig. 2d). On the other hand, the band-edge state
energies at kC and kL, which are determined by B0 and Bm, are almost
unchanged. At λ¼0.5, the field changes more rapidly in space, and the
larger field gradient enhances the band curvature. In addition, extra
band-edge states are created by such field (Fig. 2e). As λ decreases to

Fig. 1. (Color online) Schematic diagram of a zigzag graphene nanoribbon. The blue
dotted-line rectangle is the primitive unit cell.
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