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a b s t r a c t

The spin current and spin conductivity is computed through thermally driven stochastic process. By
evaluating the Kramers equation and with the help of k

!
: p! method we have studied the spin Hall

scenario. Due to the thermal assistance, the Kane model parameters get modified, which consequently
modulate the spin orbit coupling (SOC). This modified SOC causes the spin current to change in a finite
amount.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Today's condensed matter research mainly relies on the study
of the spin related issues of different materials. This put forward
the concept of ”Spintronics” [1,2], which unveils the importance of
the spin degrees of freedom of electron for improved spin based
devices. In this context, the development in the arena of semi-
conductor spintronics attracts the attention of many theoreticians
as well as experimentalists. Spin Hall effect (SHE) [3,4] and spin
orbit coupling (SOC) are the most important candidates for many
theoretical understanding in the realm of semiconductor spin-
tronics. The spin Hall effect is the spin analogue of charge Hall
effect with some differences as well. In spin Hall effect, external
magnetic field is redundant for separating spin up and down spin
electrons. The candidate responsible for the separation is SOC,
which effectively generates a magnetic field in the rest frame of
the electron and as a consequence we have spin current in this
system. SOC, which is the relativistic coupling between orbital and
spin degrees of freedom of electron can be obtained through the
Foldy–Wouthuysen (FW) transformation [5] of the Dirac equation
in the presence of the external electric field. Alternatively, syn-
thetic SOC can be generated via the strain parameter or with
mechanical parameters like acceleration and rotation or via
topological defects [6–8].

Besides, in semiconductor, the spin dynamics is influenced by

the k
!

: p! perturbation theory [9]. The semiconductor band struc-

ture, close to band edges, can be very well described by the k
!

: p!

method. It is possible to explain the spin dynamics of semi-
conductor by taking into account the interband mixing

via k
!

: p! perturbation theory. In [6], we have demonstrated that
when band structure of semiconductor is considered, the free
electron SOC parameter gets modified by the Kane model para-
meters. The inclusion of this renormalized SOC parameter makes
the theory of electron in semiconductor more accurate.

Finite temperature effects are very important issues in different
aspects of spin physics [10]. This gives the birth of spincaloritronics
[11]. Very recently, the spin Hall conductivity is demonstrated in
room temperature [12], which motivates us to study the thermally
activated spin related issues. We are considering here the Fokker–
Planck equation for analyzing the semi-classical motion of charge
carriers. We have incorporated the additional constraints like
damping force and also have included stochastic force arising due
to the coupling of the systemwith a stochastic source of heat bath.
In our formalism, the temperature correction is arising through
the damping force. Besides, in the presence of temperature the
Kane model parameters are affected as well. This consequently
affects the spin orbit coupling and electron ”g” factor. SOC is an
important ingredient to have control over different physical
parameters like spin current, conductivity, Berry curvature, spin
relaxation time [13], etc. In this paper, we theoretically have
investigated the thermally driven spin current in a semiconductor

on the basis of k
!

: p! perturbation theory from a generalized spin
orbit Hamiltonian, which includes the stochastic force and arbi-
trary damping force. Here the Fokker–Planck or Kramer's equation
is employed to calculate the spin current. Furthermore, the effect
of the crystal symmetry is also taken care of. At first, we have
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considered the temperature correction due to scattering
mechanism through the damping constant γ: Secondly, the tem-
perature dependence of the Kane model parameters is appraised.
Our goal is to examine the expression of the thermally assisted
spin current and spin conductivity in semi-conducting system.

The organization of the paper is as follows: in Section 2 we

build our model Hamiltonian considering the k
!

: p! coupling
between the Γ6 conduction band and Γ8 and Γ7 valance bands. In
Section 3, the semi-classical equation of motion is calculated
applying Kramer's equation. We incorporate the effect of tem-
perature through damping constant in this section and have
computed the spin current. In Section 4, the renormalization of the
Kane model parameters through temperature is taken care of,
which modifies the SOC parameters as well. This renormalization
of the SOC parameter alters the spin current in a different manner
than that of the previous case. The conclusion is presented in
Section 5.

2. The model Hamiltonian

The Pauli–Schrödinger Hamiltonian with the effect of spin orbit
coupling due to an external electric field can be written as [6–8]

H¼ iℏ2 k
!2

2 m
þqUð r!Þþqλ σ!:ð k!� E

!Þþgμ σ!: B
!

; ð1Þ

where the first and second terms are the kinetic term with m as
the free electron mass and the potential of the external electric
field respectively. The third term is the spin orbit coupling term
and the forth term denotes the Zeeman term appearing as a
consequence of external magnetic field. The free electron Hamil-
tonian in Eq. (1) modifies significantly when we consider the
whole picture within a semiconductor, where one should incor-
porate the (8�8) Kane model [14] to include the effect of energy
bands. The Hamiltonian for the (8�8) Kane model can be written
as [6,9]

H8�8 ¼
H6c6c H6c8v H6c7v

H8v6c H8v8v H8v7v

H7v6c H7v8v H7v7v

0
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1
CA ð2Þ
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3

p
P T
!

: k
! � Pffiffiffi

3
p σ!: k

!

ffiffiffi
3

p
P?T
!†

: k
! ðEvþeUÞI4 0

� Pffiffiffi
3

p σ!: k
!

0 ðEv�Δ0þeUÞI2

0
BBBBBB@

1
CCCCCCA
; ð3Þ

T
!

matrices are given as
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ffiffiffi
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and I2; I4 are unit matrices of size 2 and 4 respectively.
U ¼ Veð r!ÞþVcðrÞ is the total potential of the system which con-
tains potential due to the external electric field Veð r!Þ and crystal
potential Vc(r). Ec and Ev denote the energies at the conduction and
valence band edges respectively. Δ0 is the spin orbit gap, P is the
Kane momentum matrix element which couples s like conduction
bands with p like valence bands. This Kane Momentum matrix
element remains almost constant for group III–V semiconductors,
whereas Δ0 and EG ¼ Ec�Ev varies with materials. Here EG denotes
the energy gap between the conduction and valance band. The
parameters P, Δ0 and EG are known as the Kane model parameters.

The Hamiltonian (3) can now be reduced to an effective Hamil-
tonian of the conduction band electron states [6,9] as

Hkp ¼
P2

3
2
EG

þ 1
EGþΔ0

� �
k2þeVð r!Þ�P2

3
1
EG

� 1
ðEGþΔ0Þ

� �
ie
ℏ
σ!:ð k!� k

!Þ

þe
P2

3
1

E2G
� 1
ðEGþΔ0Þ2

 !
σ!:ð k!� E

!Þ ð5Þ

Now to find out the total Hamiltonian, we must add up the
Hamiltonian Eq. (1) with Eq. (5). The total Hamiltonian for the
electron in the conduction band edges can be written as [9]

Htot ¼
ℏ2 k

!2

2mn
þeVð r!ÞþeðλþδλÞ σ!:ð k!� E

!Þþ 1þδg
2

� �
μ σ!: B

!
;

ð6Þ

where ð 1
mn ¼ 1

mþ2P2

3ℏ2
2
EG
þ 1

EG þΔ0

� �
Þ is the effective mass and ð E!¼ �

∇
!

Veð r!ÞÞ is the effective total electric field and ðλ¼ ℏ2

4m2c2Þ is the
spin orbit coupling strength as considered in vacuum. Further-
more, the perturbation parameters (δ λ) and (δ g) are given by [9]

δλ¼ þP2

3
1

E2G
� 1
ðEGþΔ0Þ2

 !

δg¼ �4m
ℏ2

P2

3
1
EG

� 1
EGþΔ0

� �
: ð7Þ

The δλ parameter is responsible for the renormalization of spin
orbit coupling and the δg term modifies the electron g factor
considerably. It is possible to show that this extra term in the
electron g factor can produce a shift in the ESR frequency. The
Hamiltonian equation (6) can be rewritten neglecting the effect of
Zeeman term as

Htot ¼
ℏ2k2

2mn
þeUþeλeff σ

!
:ð k!� E

!Þ; ð8Þ

where λeff ¼ λþδλ is the effective SOC term. The Hamiltonian in
Eq. (8) is our system Hamiltonian, where the first term is the
kinetic term, second term is the potential energy term and the
third term denotes the SOC term. The renormalization of the mass
and the SOC indicates that when we consider the electron within a
semiconductor, we must take care of these Kane model para-
meters as well.

The renormalized SOC parameter λeff must influence the spin
dynamics in of electron [6]. Our job is to find the spin current from
Eq. (8). One can note that SOC is very important term in explaining
the spin Hall effect. Here due to the interband mixing, the SOC
term is changed. As a consequence the spin Hall current should
modify as well. But how this SOC parameter is related to thermal
corrections, is an important observation and we proceed to find
this in Section 4. But before that in Section 3 we want to find out
the spin current without incorporating the thermal corrections
of SOC.

3. Fokker–Planck equation and spin current

Considering Hamiltonian in equation (8), it is possible to cal-
culate the semi-classical equations of motion by evaluating
_r!and _p! via Heisenberg algebra. Before doing that, let us include
the stochastic forces ζ(r,t), which appears as a consequences of
other degrees of freedom as imperfection. One can also incorpo-
rate an arbitrary damping force κ(r,p). Including all these forces,
we can write the semi-classical equation of motion as

_
r!¼ 1

iℏ
r;Htot½ � ¼ p!

mn
þeλeff ð σ!� ∇

!
UÞ
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