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a b s t r a c t

A description of chemically and magnetically ordered states, based on the binomial formalism, is presented.
By this method, one can analyze all possible configurations that depend on the crystalline structure and the
size of the basic cluster used for the description of the system. The procedure is outlined for a cluster of n
sites and its application is illustrated for a 4-point cluster in fcc and bcc lattices. This cluster size is big
enough to describe ordered alloys with magnetic atoms forming decorated ferromagnetic, antiferromagnetic,
superantiferromagnetic and other more complex arrangements.

& 2015 Elsevier Ltd. All rights reserved.

The understanding of phase stability, local order, and phase dia-
grams in magnetic binary alloys, has been the subject of extensive
theoretical studies and to a lesser extent, of experimental investiga-
tions. The interdependence between chemical order and magnetic
interactions in transition metal binary alloys has been reviewed in the
past [1–3]. It is well known that the determination of the experi-
mental phase diagrams is a complicated task that involves important
metallurgical aspects that are related to the atomic mobility, since
the equilibrium atomic distribution is determined by the interplay
between the chemical interactions and the magnetic energy asso-
ciated to the magnetic element. On the other hand, theoretically, the
phase diagrams can be calculated to a good accuracy only within
phenomenological theories. First principle calculations can be per-
formed mainly to determine the ground state (zero temperature).

To determine the finite temperature phase diagram, on the basis
of phenomenological theories, one has to find first the ground state
configuration. This is a complicated task, since that state depends
on the chemical composition, the interactions included in the
Hamiltonian, the crystalline structure, and the geometrical cluster
used as a basic unit for the statistical description.

Here, we describe a simple model, based on the binomial
formalism, to determine all the different geometrical and magnetic

structures in a binary alloy, AxB1�x, in which one of the components
with concentration x, A, carries a magnetic moment. In this treatment
we only allow that all the magnetic moments are collinear, in a
ferromagnetic (A↑) or antiferromagnetic (A↓) orientation.

The total number of geometrical and magnetic configurations
depends on the number of different spices that can occupy the
lattice sites, in this case A (up or down) or B, and on the number of
cluster sites n. In this particular example, this number is given by
ð3Þn. We use the binomial relation to describe all the configura-
tions

½ðA↑þA↓ÞþB�n ¼
Xn

m ¼ 0

n!
ðn�mÞ!m!

ðA↑þA↓ÞmBn�m; ð1Þ

with

ðA↓þA↑Þm ¼
Xm

r ¼ 0

m!

ðm�rÞ!r!A
r
↑A

m� r
↓ : ð2Þ

However, in this case in which we consider only spin up or
down orientations for the species A, and due to symmetry reasons
not all the configurations are different. Furthermore, the number
of non-equivalent configurations depends on the crystallographic
lattice under consideration.

We illustrate the method by taking a 4-point cluster. Thus, the
total number of states is 34 ¼ 81 and they are described by the
relation

½ðA↑þA↓ÞþB�4 ¼ ðA↑þA↓Þ4þ4ðA↑þA↓Þ3Bþ6ðA↑þA↓Þ2B2þ4ðA↑þA↓ÞB3þB4

ð3Þ
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The various terms correspond to alloys with concentration
x¼1, 0.75, 0.5, 0.25, and 0. The coefficients denote the number
of options to accommodate the A↑, A↓ and B atoms in the
cluster sites.

We now, specify the lattice under study and restrict to face-
centered cubic (fcc) and body-centered cubic (bcc) crystalline
structures. In the first case, the four-point cluster forms a regular
tetrahedron in which all the sites are nearest neighbors and
consists of 6 equal bonds. In the second case, the tetrahedron is
irregular, with four bonds shorter than the other two. Thus, each
atom has two nearest neighbors and one next-nearest neighbor.

The first term in Eq. (3), corresponds to the situation in which
all the four sites are occupied by magnetic atoms. Thus one has to
consider the following five arrangements:

ðA↑þA↓Þ4 ¼ A4
↑þ4A3

↑A↓þ6A2
↑A

2
↓þ4A↑A

3
↓þA4

↓ : ð4Þ

The sum of the coefficients (16¼ 24) is the total number of ways
to occupy the cluster sites with A↑ and A↓. The first and last terms
correspond to the cluster occupied by spins pointing in the same
orientation; those states are equivalent and therefore degenerated.

In the case of the fcc lattice, from the 16 possible configurations
only 3 are different; A4

↑ ;A
3
↑A↓, and A2

↑A
2
↓ . The degeneracy for those

states is 2, 8, and 6, respectively. These structures are depicted in
Fig. 1; the lattice is drawn on the left-hand side and the 4-point
cluster on the right. For a better visualization, we show in Fig. 1a a
typical tetrahedron in the lattice and identify the atoms with
numbers. A simple ferromagnetic arrangement is shown in Fig. 1a.
In Fig. 1b we show the case in which one of the magnetic moments
in the tetrahedron is oriented in the down direction. This produces
a crystal with (100) ferromagnetic planes that alternate with
planes that consist of antiferromagnetic arrangements. The case
in which two spins point in one direction and the other two in the
opposite one correspond to the phases known as AF1 and AF3 [4].
Those are formed by (100) planes with spins in the same direction
but opposite between them (AF1) and planes with equal number
of up and down spins (AF3). Fig. 1c corresponds to the AF1 phase.

The second term of Eq. (3), corresponds to the case in which
one substitutes one magnetic atom by a non-magnetic one, i.e.
x¼ 3=4. The various terms are the following:

4ðA↑þA↓Þ3B¼ 4A3
↑Bþ12A2

↑A↓Bþ12A↑A
2
↓Bþ4A3

↓B: ð5Þ

The number of possible configurations sums 32, but the
configurations 4A3

↑B and 4A3
↓B are equivalent. The same happens

with the arrangements 12A2
↑A↓B and 12A↑A

2
↓B. Thus, one obtains

only two different ordered magnetic phases which are shown in
Fig. 2. In Fig. 2a all the magnetic atoms are ferromagnetically
aligned and in Fig. 2b the (100) ferromagnetic planes alternate
with planes containing the element B and the spin down atoms.

The alloy with equal number of magnetic and non-magnetic
elements is described by the third term in Eq. (3).

6ðA↑þA↓Þ2B2 ¼ 6A2
↑B

2þ12A↑A↓B
2þ6A2

↓B
2: ð6Þ

Here, despite the fact that the total number of configurations sum
24, only two are different. The crystal consists of alternate (100)
planes with magnetic and non-magnetic atoms. In one case all the
magnetic atoms point in the same direction (ferromagnetic dysyr)
and in the other each plane with magnetic atoms are antiferromag-
netically ordered.

Fig. 1. The fcc crystalline magnetic structures generated by using a regular
tetrahedron as a basic set (left figures) and the 4-point cluster occupation (right
figures) for a pure magnetic element (x¼1): (a) ferromagnetic, (b) with one of the
four magnetic moments pointing in the opposite direction; (c) when two of the
four spins point in the opposite direction. For a better visualization, we show in
Fig. 1a a typical tetrahedron in the lattice and identify the atoms with numbers.

Fig. 2. The two fcc crystalline magnetic structures generated in alloys with x¼ 3=4.
On the left (right) we show the lattice (the occupation of the 4-point clusters).
(a) The ferromagnetic phase. (b) The phase produced when one of the magnetic
moments points in the dawn direction.
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