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a b s t r a c t

In this communication, we investigate a toy model of three-dimensional topological insulator surface,
coupled homogeneously to a fictitious pseudospin-12 particle. We show that this toy model captures the
interesting features of topological insulator surface states, which include topological quantum phase
transition and quantum spin Hall effect. We further incorporate an out-of-plane magnetic field and
obtain the Landau levels.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, topological insulators (TIs) have captivated
considerable attention of researchers [1–5,8]. These fascinating
materials involve compounds such as Bi2Se3 or Bi2Te3, whose
electronic bulk structure is an insulator with a finite gap separat-
ing the conduction band and the valence band, but their edges (for
2D TIs) or surfaces (for 3D TIs) have gapless states, which are
protected by time-reversal symmetry ðTRSÞ. These states are robust
to perturbations that do not break this symmetry. In recent years,
these gapless states have been the focus of interest due to the
simple Dirac-like Hamiltonian which describes them. However,
breaking TRS introduces many interesting phenomena; this can be
achieved by depositing a ferromagnet or a superconductor on the
surface of a TI. Thus, the topologically protected surface state
develops a gap, which leads to interesting electronic transport,
which includes half quantized conductivity, Majorana bound
states, etc. [1,11–15,17,18]. They also have potential technological
applications in the field of spintronics [19,20].

In this communication, we study a toy model that captures
some of the interesting features of surface states in topological
insulators. Specifically, we study a fictitious pseudospin-12 particle
interacting homogeneously with the surface of a TI. Assuming

anisotropic “in-plane” and “out-of-plane” exchange interactions
on the interface, say λ J and λ? , the coupled system exhibits a
topological quantum phase transition as a function of ξ¼ λ? =λ J .
This phase transition is associated with a quantum phase transi-
tion point at ξ¼ 1, which separates two regions: ξo1, with two
topologically protected Dirac points (semimetallic phase) and
ξ41, which is fully gapped (quantized spin Hall phase). We
further show that when the z-component of the pseudospin is
conserved, the system decouples into two Hamiltonians which are
related by TRS. The coupling term opens two gaps at the Γ point
on the interface, which are degenerate but with opposite spin
orientations. Each gap opening gives rise to a half quantized Hall
conductivity. Upon applying an electric field, an opposite spin
current is induced on each interface leading to a quantized spin
Hall conductivity. Furthermore, we introduce a non-conserving
term in the quantized spin Hall Hamiltonian by breaking the
conservation of the z-component of the pseudospins. This leads to
the obliteration of the quantized spin Hall conductivity. However,
in this non-conserving regime we obtain a nontrivial topological
spin Chern number by diagonalizing the projection of the pseu-
dospin onto the occupied valence bands [21].

2. Simplest single Dirac point

Most of the interesting physics of 2D metals are captured by
investigating the robustness of the band touching points (nodes). The
bulk energy band near these points usually replicates a 2D Dirac
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Hamiltonian; thus these nodes are called Dirac points. The simplest
form of Dirac point can be mapped out from this simple Hamiltonian:

H¼ vF ðẑ � σÞ � k; ð1Þ

where vF is the Fermi velocity and σi; i¼ x; y; z, are the Pauli matrices
representing the real spins of the surface states. The z-component is
taken to be perpendicular to the plane of the 2D sample and
k¼ ðkx; kyÞ is the 2D surface Brillouin zone momentum. This Hamil-
tonian describes many known physical systems, such as the surface of
a 3D topological insulator [8], and the Dirac point Hamiltonian in
graphene in which the Pauli matrices are pseudospins [10]. Evidently,
this Hamiltonian is invariant when the spin and momentum go to
minus of their original values; in other words, the Hamiltonian
possesses TRS, where the time reversal operator is given Θ¼ iσyK;
K is a complex conjugation. The energy spectrum is trivial and given
by Es ¼ svF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þk2y

q
; s¼ 7 . It is apparent that the two bands touch

each other at k¼ 0. The robustness of this Dirac point is guaranteed by
any perturbation that preserves the TRS of Eq. (1). By breaking TRS, the
degeneracy of the band might be lifted and many interesting
phenomena can emerged. There are several terms that break TRS;
for instance, Δxσx and Δyσy do break TRS; they correspond to Zeeman
magnetic field contributions along the x and y directions respectively.
However, addition of these terms to Eq. (1) simply shifts the position
of the Dirac points to k¼ ð0; �Δx=vF Þ and k¼ ðΔy=vF ;0Þ respectively.
Thus, the degeneracy is not lifted. The only TRS breaking term that lifts
the degeneracy of the bands is the direct coupling of the surface
electron spins to the Zeeman magnetic field term perpendicular to the
plane, i.e., Δzσz . This term can also be generated by depositing a
ferromagnet on the surface electrons [11,13,14]. It is evident that this
contribution opens a gap of size 2jΔz j at k¼ 0. Consequently, when
the Fermi energy lies between the gap, this leads to a half-quantized
Hall conductivity [8,9]. In graphene, however, there are an even
number of Dirac points. In this case, the charge Hall conductivity
vanishes in the ordinary insulating state [5–7].

3. Toy model

As mentioned in the preceding sections, the surface of a 3D
topological insulator possesses many interesting features when
TRS is explicitly broken. In this section, we will consider a 3D
topological insulator whose surface is homogeneously coupled to a
fictitious pseudospin-12 particle; the low-energy effective Hamilto-
nian can be written as

H¼ vF ðẑ � σÞ � k�λ J τxσx�λ? τzσz; ð2Þ

where σi and τi (i¼ x; y; z) are the Pauli matrices acting on the
topological insulator space and the fictitious pseudospin-12 particle
space respectively. The coupling constants λ J and λ? are the
anisotropic in-plane and out-of-plane homogeneous exchange
interactions. In most cases of physical interest, such interaction
is usually inhomogeneous, i.e., the last two terms in Eq. (2) should
contain a delta function. Thus, Eq. (2) does not describe any known
physical system. However, it is possible that it might be applicable
to a pseudo-quantum qubit, but we are not interested in any
specific system, instead we will consider it as a toy model that
captures some of the interesting physics of TI surface states.
Although our model does not describe any known physical system,
it possesses some features that are similar to other models that
describe known systems. This is the main purpose of this com-
munication. We will consider Eq. (2) as the basis of our investiga-
tion in this Communication. It is apparent that Eq. (2) explicitly
breaks TRS, i.e, ½Θ;H�a0, where Θ¼ τx � iσyK. Due to the
fictitious pseudospin-12 particle, Eq. (2) is obviously a 4-
band model.

4. Topological quantum phase transition

Most known systems such as graphene and thin film topologi-
cal insulators possess topological quantum phase transition. This is
manifested at the gap closing point which separates an ordinary
insulator from a quantized Hall insulator [16,26]. These phases are
usually distinguished by a topological invariant quantity called the
Chern number. It is generally defined as [25]

C¼ 1
24π2ϵαβγ Tr

Z
d3kG∂kαG�1G∂kβG�1G∂kγG�1; ð3Þ

where ϵαβγ is the totally antisymmetric tensor, α¼ 0; x; y; z, etc.,
labels the components of a four-vector, and Matsubara Green's
function can be written as

G�1ðiωn;kÞ ¼ iωnI4�4�H: ð4Þ
The identity I4�4 is a 4� 4 matrix and kα ¼ ðiωn;kÞ is the

momentum four-vector. In principle the Chern number can be
computed for any model of interest. One finds that it has a unique
value in each phase, which is immutable by any smooth deforma-
tion of the system (provided the gap does not close). In general,
the emergence of quantum phase transition in electron systems
requires the violation of CPT symmetry [25], i.e., charge conjuga-
tion, parity, and time-reversal symmetries. It is evident that our
model in Eq. (2) explicitly breaks parity and time-reversal sym-
metries. Thus it can capture quantum phase transitions similar to
those predicted in known systems. In order to see this, we
diagonalize Eq. (2) and find that the eigenvalues are given by

Esη ¼ ð�1Þη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2F k

2
yþλ2?

q
þsλ J

� �2
s

; ð5Þ

where s¼ 7 and η¼ 0;1. There are two energy sectors Eþη and
E�η. In each sector there are two bands with η¼ 0 being the
conduction band and η¼ 1 being the valence band.

The E�η bands have two Dirac points (Eþη bands are always
gapped) at 7K, where

K¼ 0;
λ J

vF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ξ2

q� �
; ξ¼ λ? =λ J : ð6Þ

The topological quantum phase transition as a function of ξ can be
understood as follows. At the point ξ¼ 0, the system is a
semimetal with two Dirac points separated by the wave vector
vFky ¼ 2λ J along the y-direction. The semimetallic phase is con-
trolled by the in-plane exchange interaction. Provided ξo1, these
two Dirac points remain intact, separated in momentum space by
a wave vector vFky ¼ 2λ J

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ξ2

q
. They are topologically protected

and cannot be eliminated by changing the parameters of the

Fig. 1. Color online. The phase transition in (ξ; ky) space with vF ¼ 1¼ λ J . The
quantum phase transition point ξ¼ 1 separates two regions: ξo1, with two Dirac
points and ξ41, which is fully gapped; see Fig. 2.
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