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a b s t r a c t

We explore topological phases in biased ferromagnetic bilayer graphene, formed by bilayer graphene
subjected to an external ferromagnetic exchange field, under a magnetic field. The most likely way to
obtain a variety of distinct broken symmetry topological phases is proposed by means of ferromagnetic
exchange field. Both spin-filtered quantum Hall and quantum spin Hall (QSH) phases are found. Edge
modes in this QSH phase carry charge, spin and valley currents. When both time reversal and inversion
symmetries are broken, the QSH phase remains robust against weak disorder. Moreover, topological
phase transition from helical phase to chiral phase can be driven by simply tuning bias voltage or Fermi
energy. A few possible experimental realizations are also discussed.

& 2015 Published by Elsevier Ltd.

1. Introduction

Graphene has generated a great interest since its discovery [1–
3]. The band structure of monolayer graphene is a Dirac-like
spectrum in which conduction and valence bands with linear
dispersion touch at the K and K 0 points in a Brillouin-zone corner
[2]. The zero-energy anomaly due to the unique linear dispersion
and particle–hole symmetry of Dirac cones gives rise to the half-
integer quantum Hall (QH) effect, characterized by chiral spin-
degenerate edge states [4,5]. In the presence of intrinsic spin–orbit
coupling (SOC), graphene has been predicted to be a two-dim-
ensional quantum spin Hall (QSH) system, characterized by helical
edge states formed by counterpropagating edge states with oppo-
site spins [6]. The bilayer graphene with the Bernal stacking is
shown to have a quadratic band structure [7,8]. A tunable energy
gap may open when a bias voltage is applied between the two
layers [8–10], suggesting possible graphene-based tunable electro-
nics and spintronics applications [11,12]. Due to its unusual band
structure, the system shows a novel QH effect [7,13], unconven-
tional QSH effect and quantum valley Hall (QVH) effect [14].

The QSH effect has attracted much attention since the pioneer-
ing works by Kane and Mele [6]. Now, it is well known that QSH
effect is protected by time-reversal symmetry (TRS) and can be

described by a Z2 topological invariant. The intrinsic SOC in
graphene opens a small non-trivial gap in the bulk and induces
spin-filtered edge states inside the gap, which plays an important
role in QSH effect. Nevertheless, the QSH effect is proved to be
unobservable in pristine graphene [15,16], and was first experi-
mentally observed in HgTe/CdTe quantum well [17].

Apart from the conventional QSH effect, two other kinds of TRS-
broken QSH effects have been theoretically predicted in graphene
so far. One is caused by intrinsic SOC combined with an exchange
field [18] or a magnetic field [19–21]. Such QSH effect is unstable to
spin-flip scattering due to magnetic disorder. However, recent
progress shows that this QSH effect could become robust against
general perturbations without any symmetry constrains [22]. The
other is CT-invariant QSH effect in ferromagnetic graphene, invol-
ving a charge conjugation C and time reversal T operation [23].

In this work, we concentrate in topological phases in biased
ferromagnetic bilayer graphene under a magnetic field. We con-
sider the most promising way of achieving such topological phases
by ferromagnetic exchange field. Depending on bias voltage or
filling factor, and also on underlying magnetic field, a rich variety
of electronic structures are realized. These interesting electron
structures bring about plenty of topological phases, such as weak
QSH, QSH, spin-filtered QH and spin-imbalanced QH phases. The
tunability and electronic transport of topological phases are also
addressed. In QSH phase, the edge states provide both spin and
valley filtering, and therefore share the properties of both QSH and
QVH phases. When time reversal and inversion symmetries are
broken by magnetic field and bias voltage, the fate of the QSH
phase is explored. Besides band structure engineering, bilayer

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ssc

Solid State Communications

http://dx.doi.org/10.1016/j.ssc.2015.04.006
0038-1098/& 2015 Published by Elsevier Ltd.

n Corresponding author at: School of Physics Science and Technology, Xinjiang
University, Urumqi 830046, China. Tel.: þ86 18290801525.

nn Corresponding author at: School of Physics Science and Technology, Xinjiang
University, Urumqi 830046, China. Tel.: þ86 9918582405.

E-mail addresses: xulei@xju.edu.cn (L. Xu), zhj@xju.edu.cn (J. Zhang).

Solid State Communications 212 (2015) 41–45

www.sciencedirect.com/science/journal/00381098
www.elsevier.com/locate/ssc
http://dx.doi.org/10.1016/j.ssc.2015.04.006
http://dx.doi.org/10.1016/j.ssc.2015.04.006
http://dx.doi.org/10.1016/j.ssc.2015.04.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2015.04.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2015.04.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2015.04.006&domain=pdf
mailto:xulei@xju.edu.cn
mailto:zhj@xju.edu.cn
http://dx.doi.org/10.1016/j.ssc.2015.04.006


graphene is an attractive candidate for transistor applications
since it has a tunable gap. Hence, the theoretical feasibility of
these results is proposed.

2. Model and method

The tight-binding Hamiltonian of ferromagnetic monolayer
graphene which can be realized by depositing graphene on a
ferromagnetic insulating substrate [24,25], under a perpendicular
magnetic field B¼ ð0;0; �BÞ is [23]

HMLG ¼ �t
X
〈i;j〉;α

eiϕij c†i;αcj;α�M
X
iα

αc†i;αci;α; ð1Þ

where c†i;α and ci;α are the electron creation and annihilation
operators on site i with spin α, and t is the nearest neighbor
hopping amplitude. The Peierls phase is denoted by ϕij ¼

R ri
rj
A �

dr=ϕ0 with a integral over a line between sites j and i. The Landau
gauge A¼ ð0; �Bx;0Þ is employed and ϕ0 ¼ ℏ=e. In our calcula-
tions, the magnetic flux per hexagon is ϕ¼ 3

ffiffiffi
3

p
=2a2B=ϕ0, where a

is the lattice constant. M is the ferromagnetic exchange field.
The corresponding Hamiltonian of biased the Bernal-stacked

ferromagnetic bilayer graphene takes the form [14]

HBLG ¼HT
MLGþHB

MLGþt?
X
〈i;j〉;α

ðc†i;α;Tcj;α;Bþc†j;α;Bci;α;T Þ

þU
X
i;α

c†i;α;T ci;α;T �U
X
j;α

c†j;α;Bcj;α;B; ð2Þ

where HT;B
MLG are the top (T) and bottom (B) layer Hamiltonians of

Eq. (1), and t? ¼ 0:13t is the nearest neighbors hopping of
interlayer sites in the Bernal stacking. The bias voltage between
two layers is 2U which can be controlled by chemical doping with
nonmagnetic impurities or by adjusting the gate voltage [9,26].

To classify QSH phase, the spin Chern number [27] as well as Z2
topological index is introduced and proved to yield equivalent
descriptions for time-reversal invariant systems [27,28]. However,
the spin Chern number unlike Z2 invariance retains its robu-
stness when TRS is broken. Therefore, we use the topological
Chern number to discuss the topological property of the band
structure. For graphene, the topological Chern number [29] and
the spin Chern number [27,28] are defined as Cc ¼ Cþ þC� and
Cs ¼ ðCþ �C� Þ=2, where C7 is the Chern number for spin-up and
spin-down sectors and can be expressed as C7 ¼P

ηC
η
7 with η

the valley index. The valley Chern number [30] per valley can be
calculated from

Cηα ¼
1
2π

X
n

Z
BZ
dkx dky Ωn

xy

� �η
α
; ð3Þ

where α¼ 7 is the spin index and Ωn
xy is the Berry curvature of

the nth band given by

Ωn
xy ¼ �2

X
n0 an

Im〈njvx jn0〉〈n0 jvy jn〉
εn�εn0ð Þ2

: ð4Þ

The summation in momentum space is over all occupied bands
below the bulk gap and vx;y ¼ ∂H=∂kx;y is the velocity operator.

3. Results and discussion

Let us start by recalling the band structure of biased bilayer
graphene under a perpendicular magnetic field. For biased bilayer
graphene, the spatial inversion symmetry is broken and the valley
degeneracy is lifted owing to the different natures of lowest
Landau levels (LLs) in the two valleys. The resulting LLs are slightly
split in each valley (η¼ 7 for K and K 0). For nZ2, the LLs are
described by [13] ε7

n ¼ 7ℏωc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn�1Þ

p
�ηU, where ωc ¼ eB=m is

the cyclotron frequency, m¼ t? =2υ2F is the effective mass of charge
carriers, υF ¼ ð

ffiffiffi
3

p
=2Þat=ℏ is the Fermi velocity, and n¼ 0;1;2;… is

the LL index. Note that the accuracy of this expression is only
correct in the limit υF

ffiffiffiffiffiffiffiffiffiffiffi
2eBℏ

p
{t? . For n¼ 0;1, the low-energy LL

spectrum is identified by ε0 ¼ ηU and ε1 ¼ ηU�ηδ, where
δ¼ Uℏωc=t? is an induced splitting for every LL. There are also
two specific LLs closest in energy to n¼0,1 LLs, for simplicity, we
label them by ηE0. The valley asymmetry has a stronger effect in
the zero energy LLs and opens a bias-induced energy gap Δg ¼ 2U.
The eightfold degenerate zero-energy LL (n¼0 or 1) is split into
four [9]. Two of which are forming two flat bands with energies U
and �U, and the other two become dispersive inside the gap as
shown in Fig. 1(a).

We numerically diagonalize the Hamiltonian in Eq. (2) to
investigate the band structure of bilayer graphene. An intervalley
gap ΔK opens in a strong magnetic field [Fig. 1(a)]. To be more
intuitive, we derive the topological phase diagram of the gap ΔK as
a function of both U and ϕ in Fig. 1(b). The intervalley gap does not
emerge under weak magnetic field1 ϕc � 1=640 regardless of bias
voltage [31]. At a fixed ϕ (4ϕc), the gap increases at first and then
decreases to zero as bias voltage jU j increases. Here, we empha-
size that the bias-driven intervalley gap, necessity for spin-filtered
QH phase, can be obtained on both zigzag-edged and armchair-
edged bilayer graphene ribbons. However, for the armchair edge
geometry, its valleys K and K 0 mix without a valley filter [14,32].
Thus, we only focus on zigzag edge geometry with open (periodic)
boundary condition in the x (y) direction.

1

Fig. 1. (Color on-line) (a) Low-energy spectrum of zigzag-edged bilayer graphene ribbon for the model without ferromagnetic exchange field for U ¼ 0:05t and ϕ¼ 1=400.
The width of zigzag-edged ribbon is L¼21.2 nm hereafter. The energy spectra for spin-up and spin-down components are completely degenerate. (b) The intervalley gap ΔK

in the U–ϕ plane. The color scale indicates the magnitude of the gap in units of t. The gap is zero in the white region.

1 This critical magnetic field is a numerical result with interlayer coupling
t? ¼ 0:13t and it will change with different interlayer couplings t? .
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