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a b s t r a c t

The ground-state properties and quantum phase transitions (QPTs) of the one-dimensional extended quantum
compass model (EQCM) with Heisenberg perturbation are investigated by the infinite time-evolving block
decimation (iTEBD) algorithm. The ground-state properties are found to be affected distinctively by the
Heisenberg perturbation and rich phase diagrams are obtained. The first-order QPTs line at J1 ¼ 0 disappears
even with an infinitesimal Heisenberg perturbation and two interesting intermediate phases, such as a
disordered phase and a transverse Néel phase, are induced. Both bipartite entanglement and fidelity per site
are capable of describing all the second-order QPTs.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The role of the orbital degrees of freedom in determining the
magnetic and transport properties of transition metal oxides
(TMOs) has been widely recognized [1–6]. The complex intrinsic
interplay in TMOs induces various fascinating physical phenomena
and extremely rich phase diagrams [7]. In order to mimic the
orbital states with a two-fold degeneracy, the quantum compass
model (QCM) was firstly introduced [8]. It was argued that
materials with large spin–orbit coupling may give rise to compass
spin interaction [9], leading to either the compass or the Kitaev
honeycomb model [10]. Besides the ability to describe t2g systems,
the compass model also shows some interdisciplinary characters.
Recently, it was proposed that the compass model can be used to
describe the physics of protected qubits [11,12], so it may have
potential application in quantum information techniques. Due to
the strong quantum frustration in compass spin interaction, it is
difficult to solve analytically. Furthermore, such an interaction may
lead to large degeneracy in the energy spectrum and thus set
obstacles for numerical simulations [13]. It was suggested gener-
ally that there should exist a symmetry-broken ground state and a
first-order quantum phase transition (QPT) at the self-dual point
[14–18]. Recently, one-dimensional (1D) QCM has triggered exten-
sive studies [19–28]. By mapping to the quantum Ising model,

Brzezicki et al. solved the 1D extended QCM (EQCM) exactly and
observed a first-order QPT between two disordered phases [19].
Then, Eriksson and Johannesson [25] investigated the same model
with more tunable parameters and suggested that the first-order
transition in fact occurs at a multicritical point where a first-order
transition line meets with a second-order transition line.

On the other hand, general perturbations might cause funda-
mental effects on the nonlocal characteristic of the compass model
[11,14,29]. Recently, Trousselet et al. studied the compass model
on the square lattice under the influence of perturbing Heisenberg
interactions [30], as suggested by possible solid state applications
[9,31]. It was shown that the ground-state degeneracy of the
compass model is lifted in the thermodynamic limit by infinitesi-
mal Heisenberg coupling and a rich phase diagram was presented
with various quantum phase transitions between various phases of
Z2 symmetry [32].

In this paper, we would like to discuss the effects of the
Heisenberg perturbation on the ground-state phase diagram of the
1D EQCM. Hereafter, the EQCM with Heisenberg perturbation is
called the extended quantum compass Heisenberg model (EQCHM).
By the infinite time-evolving block decimation (iTEBD) algorithm
[33], the matrix product state (MPS) ground state can be obtained
and some interesting quantities can be calculated. We would like to
study the QPTs in such a model and obtain the ground-state phase
diagram. As will be shown, the ground-state properties are affected
distinctively by the Heisenberg perturbation and novel phases will be
induced.
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2. Hamiltonian and numerical method

The 1D EQCHM is defined by
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i ¼ 1
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JH Ŝ j � Ŝ jþ1; ð1Þ

where N¼ 2N0 is the total number of sites and Ŝ ¼ ðSx; Sy; SzÞ
denotes a spin-1/2 operator. J1 and J2 on odd bonds and L1 on
even bonds are spin exchange couplings. The JH denotes the
isotropic Heisenberg perturbation. L1 ¼ 1 is set as an energy scale
in our calculations. The ground-state phase diagram of 1D EQCHM
without considering the Heisenberg perturbation was provided
previously [25]. A first-order QPT line J1 ¼ 0 and a second-order
QPT line J2 ¼ 1 were determined. Four different phases including
two disordered regions I (J140, J241) and II (J1o0, J241), a
stripe phase (SP) III (J1o0, J2o1), and a Néel phase (NP) IV (J140,
J2o1) are separated by J1 ¼ 0 and J2 ¼ 1. Subsequently, the first-
order QPT between regions I and II without energy level crossing,
which was suggested to be an “accidental” exception, was detected
by the fidelity and string order parameters [28].

The iTEBD method [33] is applied to obtain the ground state
jψ g〉 by acting an imaginary time evolution operator exp(�τĤ) on
an arbitrary initial state jψ0〉. The operator exp(�δτĤ) with small
enough δτ is expanded into a sequence of two-site gates U½i;iþ1� by
a Suzuki-Trotter decomposition. In the limit τ-1, the resulting
wave function exp(�τĤ) jψ0〉 converges to the ground state jψ g〉

of Ĥ . A four-period MPS
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jm4i�3;m4i�2;m4i�1;m4i;…〉 ð2Þ
is adopted to describe the ground state. The Γα and Λα (α¼ a;…; d)
represent three-indexed tensors and χ � χ diagonal matrices, respec-
tively. To reduce the cutoff error, the bond dimension χ is set up to 60.
Based on the ground-state wavefunction obtained by iTEBD, we can
calculate some expected values by O ¼ 〈ψ g j Ô jψ g〉.

In addition, it has been shown that the quantum entanglement
has close relation to the QPTs in many-body systems [34]. The von
Neumann entropy as a bipartite entanglement measure is usually
adopted [35] to describe the QPTs. By cutting a bond randomly, a spin
chainwill be partitioned into two parts, i.e., the left semi-infinite chain
and the right semi-infinite chain. Given the MPS in its canonical form,
bipartite entanglement Sb is defined as

Sb ¼ �
X
i

Λ2
i log 2 Λ

2
i : ð3Þ

Four bipartite entanglement measures (S4i�3;4i�2, S4i�2;4i�1, S4i�1;4i,
and S4i;4iþ1) can be calculated.

Besides bipartite entanglement, the fidelity per site (f) can be
defined by

ln f ¼ lim
N-1

ln〈ψ ref jψ g〉

N
; ð4Þ

which can be used to detect the QPTs [36]. The jψ ref 〉 denotes a
reference state and jψ g〉 is the ground state. The f quantifies the
overlap between jψ g〉 and jψ ref 〉.

3. Ground-state phase diagram and QPTs

In this section, four typical paths (J2 ¼ 0:5, J2 ¼ 2, and J1 ¼ 71)
will be chosen to discuss the effects of the Heisenberg perturbation.

First, we consider the QPTs along the line J2 ¼ 0:5. Without
considering the Heisenberg perturbation (JH ¼ 0), a first-order QPT
from SP (III) to the NP (IV) occurs at J1 ¼ 0. Once the Heisenberg
perturbation is taken into account, we find that the first-order QPT

point disappears and an intermediate phase is induced. To present
our main results clearly, we just select JH ¼ 0:1 as an example. The
bipartite entanglement versus varying J1 is plotted in Fig. 1. Two
distinct maxima at Jc11 and Jc21 are observed, which indicate two
second-order quantum phase transitions take place sequentially
[28]. In order to determine Jc11 and Jc21 exactly, their scaling curves
versus 1=χ are plotted in the inset of Fig. 1. After polynomial
fitting, we obtain Jc11 C�0:32 and Jc21 C0:062 respectively.

Then, we calculate the ground-state bond energies. We find that,
although the bond energies are continuous (see Fig. 2(a)), their first-
order derivatives behave singularly at the same Jc11 and Jc21 as that
determined by the bipartite entanglement (see Fig. 2(b)). According to
the Feynman–Hellmann theorem (∂e=∂λ¼ 〈ψ j ∂ĤðλÞ=∂λjψ 〉, λ is a
tunable parameter in the Hamiltonian), the first-order derivative of
bond energy is similar to the second-order derivative of ground-state
energy per site e [28]. The derivatives of bond energies become
divergent at both critical points, which indicates the occurrence of two
second-order QPTs. Considering that the bond energy consists of
nearest-neighbor correlators ð〈Sσi Sσiþ1〉ðσ ¼ x; y; and zÞÞ, it is natural
to speculate that the first-order derivative of the nearest-neighbor
correlators should also exhibit similar characters. In Fig. 3(a), the
nearest-neighbor correlation functions on odd bonds ð〈Sσ2i�1S

σ
2i〉

ðσ ¼ x; y; and zÞÞ are provided. Although these curves themselves
behave continuously, their first-order derivatives (see Fig. 3(b)) exhibit
two singularities at Jc11 and Jc21 .

To uncover more information of the ground states,we calculate
magnetization and order parameters. In Fig. 4,the curves of the Néel
order parameter Mz

Neel ¼ 1
2j 〈Sz2i�1�Sz2i〉j and the stripe order para-

meter Mz
stripe ¼ 1

4j 〈Sz4n�3þSz4n�2�Sz4n�1�Sz4n〉j are provided. From
Fig. 4, the phase (J1o Jc11 ) with nonzero Mz

Neel should be a NP with
configurations “⋯↑↓↑↓⋯” or “⋯↓↑↓↑⋯”. While the phase in region
J14 Jc21 with nonzero stripe order along the z-axis is verified to be an
SP with spin configurations “⋯↑↑↓↓⋯” or “⋯↓↓↑↑⋯”. The stripe
phase was observed in 1D QCM by finite-size Lanczos exact diag-
onalization calculations [26] and confirmed subsequently by us [28].
We calculate the magnetization Mσ ¼ ð1=NÞΣN

i ¼ 1〈S
σ
i 〉 (σ ¼ x; y; z),

and find that it keeps zero in the whole parameter region. Then,
we calculate the dimer order parameter [37] directly. We find that
although the dimer order is very strong in the intermediate phase
(Jc11 o J1o Jc21 ), nonzero dimer order can also be observed in the other
two phases. It means that three phases are all dimerized. Therefore,
we would like to call this intermediate phase a disordered phase
rather than a dimerized phase.
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Fig. 1. (Color online) (a) Bipartite entanglement on different bonds exhibit two
singularities at Jc11 and Jc21 . The inset shows the scaling of the two critical points
versus the 1=χ.
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