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a b s t r a c t

The polaronic effect on the linear and nonlinear optical properties of spherical quantum dots with a
shallow hydrogenic impurity under electric field are studied, taking into account the interactions with
both confined and surface optical phonons. In addition, the interaction between impurity and phonons
has also been considered. Numerical results on typical Zn1�xCdxSe/ZnSe material show that the
polaronic effect or electric field redshifts the peak positions of linear and nonlinear optical absorption
coefficients and refractive index changes, but does not significantly affect the peak values of them. The
polaronic effect is enhanced with the decreasing quantum dot radius or Zn concentrations. Additionally,
it is found that the electric field has an important influence on the polaronic effect especially on the
surface optical phonons.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that optical properties such as optical absorp-
tion coefficients (ACs), refractive index changes (RICs) and oscilla-
tor strength have the potential for luminescent device research.
Furthermore, there is no doubt that the zero-dimensional quan-
tum dots (QDs) with well-controlled shape and size have became
one of the hottest topics in the area of the condensed matter and
materials physics due to their distinctive electronic and optical
properties. Therefore, the optical properties of QDs have attracted
the considerable attention in the experimental and theoretical
studies in recent years [1–6].

Because electron–optical phonon interaction plays an impor-
tant role in optical and electrical properties of QDs, it is still a
interesting topic theoretically and experimentally. Compared with
other nanostructures, the interaction between electron and pho-
non is more effectively in QDs because of its special structure.
Besides the confined optical (CO) phonons, there exist surface
optical (SO) phonons due to the difference in the dielectric
constants of the materials inside and outside the structure, and
it depends strongly on the QD shape and electric field [7]. There
are many works about various forms: spherical QDs [8–10],
cylindrical QDs [11–13], ellipsoidal QDs [14–16], and the polaronic
effect has been studied in some works. It is found that the CO
phonons play the most important role in the polaronic effect and
the contribution from the SO phonons is either negligible or

nonexistent. Unfortunately, in most of them the impurity–phonon
interaction is either ignored or not discussed. In fact, the con-
tribution from impurity–phonon interaction is very important and
generally larger than that from electron–phonon interaction
[17,18]. For these reasons, it can be said that the polaronic effect
is important to the optical properties of QDs, and should be
considered in the related works.

The applied electric field is quite useful as a powerful tool for
studying the physical properties of semiconductors and modulat-
ing the properties of devices. The effect of applied electric field on
the electronic states in QDs has been studied extensively by many
authors in the past few years [17–21]. As known, the electric field
induces both a polarization of the carrier distribution and an
energy shift of the quantum states to introduce a considerable
change in the energy spectra of carriers, and this property is very
useful for optoelectronic devices. Because electric field has an
important influence on the carrier distribution, the optical proper-
ties of QDs also depend on the electric field. There are some works
about the optical properties of QDs under the influence of electric
field [2,4,22], but the electron–phonon interaction is not consid-
ered. As a matter of fact, the electric field should have an
important effect on the electron–phonon interaction. In particular,
the SO phonon modes strongly depend on the electric field.

In the present work, taking the electron–phonon and impurity–
phonon interactions into account, including CO and SO phonon
modes, we investigate the influence of electric field on the linear
and third-order nonlinear ACs and RICs of a spherical QD by using a
variational approach. To come closer to the real situation, the
electronic confinement is modeled by a finite potential well. This
paper is organized in the following way. In Section 2, the ACs, RICs,
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and the electron–phonon interaction are described. In Section 3, the
general behavior of electron–phonon interaction, and the optical
properties of the system under the influence of electric field are
studied numerically. Finally, the conclusions are presented.

2. Theory and model

In the following, the interactions between electron and various
phonon modes, the system Schrodinger equation and wave func-
tion, and ACs and RICs are introduced step by step.

2.1. Electron–phonon interaction

Let us consider a sphere of radius R embedded in a large
medium. When an electron is inside (roR) the QD, it will interact
with the internal LO phonons, similar to the case in quantum well,
we call it CO phonons. When the electron is close to the QD
boundary (rER), it will interact with the SO phonons. The classical
Hamilton functions of CO and SO phonons can be written as
follows:

HCO
ph ¼

X
lmn

ℏωCO aþ
lmnalmnþ

1
2

� �
; ð1Þ

HSO
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X
lm
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2

� �
; ð2Þ

where ωCO and ωSO,l are the eigenfrequencies of CO and SO
phonons respectively. The Hamiltonian of both electron and
impurity interact with CO and SO phonons can be written as [9,23]
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where jl and nl are the lth order spherical Bessel and Neumann
functions respectively; Yl,m is spherical harmonics function; kln¼μln/R,
μln is the nth root of jl; es¼e/(4πε0)�1/2, and e is the absolute value of
the electron charge, ε0 is the permittivity of free space; ε11 (ε21) and
ε10 (ε20) are the high-frequency and static dielectric constants in dot
(barrier) material respectively. The index n¼1, 2, …; l¼0, 1, 2, …;
m¼0, 71, 72,…, 7 l for the CO phonons, and l¼1, 2,…;m¼0, 71,
72,…, 7 l for the SO phonons. In Eqs. (3) and (4), r and r0 are the
positions of electron and impurity (the center of the sphere is taken

as the origin) respectively. In this paper, we assume that the impurity
is at the center, i.e. r0¼0.

2.2. Variational procedure

Followed above, we can write the Hamiltonian of whole system
in the presence of an external electric field along the z direction as

H¼H0þHCO
ph þHSO

ph þHCO
ep þHSO

ep ; ð10Þ
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where m1 (m2) and ε11 (ε21) are the effective mass and high-
frequency dielectric constant in dot (barrier) material respectively;
Uðr,Þ is the confinement potential of QDs; F is the strength of the
electric field along the z direction; θ is the angle between the
electronic position vector r

,
and the electric field direction.

As is usually done for the bulk case, first it is necessary to
eliminate the contribution to the total electron energy from the
impurity–phonon interactions. This can be achieved by using a
first unitary transformation to displace the equilibrium position of
the ions

U ¼ exp
X

j ¼ CO;SO

X
s

βjsV
j
sðr0Þaþ

js þH:c:

ℏωj
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>;:
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Here CO and SO denote the CO and SO phonons respectively. The
index s is given by n¼1, 2, …; l¼0, 1, 2, …; m¼0, 71, 72, …, 7 l
for the CO phonons, and l¼1, 2, …; m¼0, 71, 72,…, 7 l for the
SO phonons. Then the Hamiltonian can be transformed into the
following form:
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For convenience, we have dropped the nonphysical divergent term
arising from the use of the point-charge model, the effect of above
displacement on the lattice polarization leads to the following
electron–impurity “exchange” interaction:

Hx ¼
X

j ¼ CO;SO
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Within the adiabatic approximation, the effect of the electron–
phonon interaction is to displace further the equilibrium positions
of the ions. It can be achieved by the following unitary transfor-
mation:

U0 ¼ exp
X

j ¼ CO;SO
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The parameters fjs are variational functions and will be determined
by minimizing the expectation value of the bound polaron energy.
The total wave function of the system is given by the product of
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