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a b s t r a c t

We investigate the shot noise in superconducting wires under the periodic modulation of the chemical
potential. The nonequilibrium Green's function technique is employed, and the formula for current and
shot noise is obtained. The coupling between the Majorana bound states at ends of wire can be tuned by
the periodic modulation of chemical potential. It is related with the strength A and the phase δ
intimately. The current, shot noise and the corresponding Fano factor display oscillation behavior as the
strength A increases. In addition, the coupling between Majorana bound states can be suppressed by
strong coupling between leads and superconducting wire.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In 1937, Ettore Majorana found a real solution to the Dirac
equation [1]. In contrast to the traditional solutions of the Dirac equa-
tion where cac†, this real solution equals to the antiparticle solution
γ ¼ γ†. The Majorana fermion has the anticommunication relation
fγi; γ†j g ¼ 2δij in contrast to a Dirac fermion which obeys the
fci; c†j g ¼ δij. Due to the Pauli exclusion principle, the Dirac fermion
obeys c2 ¼ 0, however the Majorana fermion obeys γ2 ¼ 1. Due to
these facts, a Majorana fermion does not have the usual fermionic
statistics but it follows non-Abelian statistics which makes the
Majorana fermion particularly interesting in the field of topological
quantum computation [2]. Therefore, searching for Majorana fer-
mions in the condensed matter system has attracted intensive studies
in past years [3–7], and various schemes for realizing Majorana
fermions in solid state systems have been proposed [8]. These systems
include p-wave superconductors [9], spin–orbit-coupled quantum
wells [10–12], topological insulators [13,14], nanowires [15–18] and
half metals [19,20]. In order to verify the existence of Majorana
fermions in these system, transport behaviors have been investigated,
including measurement of noise [21,22], differential conductance

[23,24], resonant Andreev reflection [25] and periodic Majorana–
Josephson currents [15,16].

Among these proposals, one-dimensional wire with strong
spin–orbit coupling and Zeeman fields is believed to host Major-
ana fermions at the two ends [15,16,26]. The experimental finding
of a zero-bias peak [27] of conductance in this one-dimensional
wire is in precise agreement with the theoretical predictions
[28,29] and it can be taken as the signature of Majorana bound
states [23,24]. The zero-bias peak of conductance is related with
the temperature, tunnel barrier potential, magnetic field and
disorder of nanowire [30,31]. Recently, Wu et al. investigated the
behaviors of shot noise in this topological superconducting wire
between two normal leads by nonequilibrium Green's functions
method for tight-binding model [32]. The Fano factor for single-
lead devices reaches 2 at low bias due to the resonant Andreev
reflection, it is significantly reduced by a finite though small
coupling to the second lead. These phenomena are clear signatures
of Majorana bound states. In order to control the physical proper-
ties of nanowires, we modulate the chemical potential periodically
through the gate. The Majorana edge states in the p-wave super-
conducting wire are robust against the periodical modulation [33].

Motivated by the works of Wu et al. [32] and Chen et al. [33], we
investigate the shot noise in superconducting wires with a periodic
modulation of the chemical potential in this paper. The differential
conductance and shot noise are influenced by the periodic modula-
tion of the chemical potential intimately. The two-peak structure in
differential conductance and the valley in Fano factor show that the
zero energy state is split by the coupling between the Majorana
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bound states. The two-peak structure and the valley disappear
gradually due to the coupling decreases gradually until disappear as
the chemical potential A increases. It indicates that the coupling
between end states can be destroyed by stronger modulation of the
chemical potential. However, the destroyed coupling can recover as
the phase δ changed. In addition, the current and shot noise display
oscillation behavior under the strong modulation.

This paper is organized as follows. In Section 2, we present the
Hamiltonian of our system and the detail algebraic expressions for
shot noise and current by using NGF technique and Wick theorem.
The numerical results are given in Section 3 with analyses. Finally,
a summary is made in Section 4.

2. Model and formalism

The device under our consideration is composed of two normal
leads coupled the one-dimensional quantumwire (Fig. 1). We consider
the circumstance where the two leads are biased by the dc voltage V
which is the drop of chemical potentials between two leads
μL�μR ¼ eV . The center nanowire is in proximity to a conventional
s-wave superconductor and subject to a Zeenman field, and a finite
pair potential Δ is induced. When the Zeeman splitting energy Vz, the

proximity-induced order parameter Δ, and the chemical potential μ

satisfy the condition Vz4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2þμ2

q
, the nanowire is driven into a

topological superconducting phase, and a pair of zero-energy MBSs
will emerge at the ends of the nanowire [10,15]. The Hamiltonian of
the nanowire can be given in tight-binding form as follows [34]:

Hwire ¼
XN
j ¼ 1

� t
2
ðc†j cjþ1þh:c:Þ�ðμj�tÞc†j cj�

αSO

2
ðic†j σycjþ1þh:c:Þ

�

þVzc
†
j σzcjþΔðcj↑cj↓þh:c:Þ

i
ð1Þ

where c†j ðcjÞ is the creation (annihilation) operator of fermions at the

jth site, t is the nearest-neighbor hopping amplitude, αSO characterizes
the spin–orbit coupling effect in the tight-binding model, and σy;z are

the corresponding Pauli matrices. The modulated chemical potential μj
is given by

μj ¼ A cos ð2πjαþδÞ ð2Þ

with A being the strength, α a rational number, and δ an arbitrary phase
shift. The modulated chemical potential can be realized through the
control of gates for the quantumwires [35,36]. Under modulation of the
periodic spatial modulation of the gate voltage, the energy spectrum of
the quantum wire acquires a periodic charge-density wave.

The Hamiltonian of electrons in the leads is Hleads ¼P
γ;kσεγ;kσc

†
γ;kσcγ;kσ , where the electron creation (annihilation)

operators in the leads are denoted by c†γ;kσðcγ;kσÞ. The coupling
Hamiltonian of the nanowires to the leads is given by

Hleads�wire ¼
X
k;σ

½ðTLc
†
L;kσc1σþTRc

†
R;kσcNσÞþh:c:� ð3Þ

The total Hamiltonian is then given by the sum of the two separate
Hamiltonians and the interaction term

H¼HleadsþHwireþHleads�wire ð4Þ

The tunneling current operator of the γth lead can be formulated
by using the continuity equation and Heisenberg equation. For our
system, the current operator of the left lead can be expressed as

Î LðtÞ ¼
ie
ℏ

X
kσ

½TLc
†
L;kσðtÞc1σðtÞ�Tn

Lc
†
1σðtÞcL;kσðtÞ� ð5Þ

The spectral density of shot noise is defined by the Fourier
transformation of the current correlation

ΠLLðt; t0Þ ¼ 〈δÎ LðtÞδÎ Lðt0Þ〉þ 〈δÎ Lðt0ÞδÎ LðtÞ〉 ð6Þ
where δÎγðtÞ ¼ ÎγðtÞ� 〈ÎγðtÞ〉. The symbol 〈⋯〉 in the above formula
denotes the quantum expectation value of the electron state and
the ensemble average over the system.

Substituting the current operator Eq. (5) into the correlation
function Eq. (6), we encounter the expectation value of the current
operator, and the four operator terms exhibit in the formula. We
employ Wick's theorem in our system, and the ensemble average
of the products of four operators are expressed by the ensemble
average of the products of two operators. Then, the correlation
function can be expressed by Keldysh Green's function. We then
solve these Keldysh Green's function by the equation of motion
(EOM) method and Langreth relations [37]. Making the Fourier
transformation over the two times t and t0, and using the relation
SLLðΩÞδðΩþΩ0Þ ¼ 1

2ΠLLðΩ;Ω0Þ, we finally obtain the zero frequency
shot noise of left lead in spin�Nambu space as follows:

S¼ �2e2

h
tr
Z

dϵ½GrΣo
11G

rΣ4
L þGaΣo

11G
aΣ4
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11G
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11þðΣr

11�Σa
11ÞGoΣ4

11G
a
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11�Σr

11ÞGrΣ4
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11G
aðΣr

11�Σa
11Þ
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11�Σr

11ÞG4Σa
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11G
4 þΣ4

11G
o Þ� ð7Þ

The current formula can be found by taking ensemble average
and time average over the current operator given in Eq. (5) [38].
After some algebra calculations, we obtain the current formula of
the left lead [32]

IL ¼
e
h

Z
dϵRe tr σ½GoΣa

11þGrΣo
11�

� � ð8Þ

where σ ¼ diagð1; �1;1; �1Þ accounts for the different charges
carried by the electrons and holes. Gr;a;o ;4 are Green's functions
of nano wires in the spin � Nambu space. The retarded and
advanced Green's functions can be written as

Gr;aðϵÞ ¼ ½ϵ�Hwire�Σr;a��1 ð9Þ
where Hwire corresponds to the matrix form of Eq. (1). Σr;a;o ;4 are
the self-energies due to the coupling between the leads and
nanowires. It has nonzero diagonal elements only at the two ends
of nanowire, i.e., Σr;a

11 ¼ 8 i=2diagðΓL;ΓL;ΓL;ΓLÞ and Σr;a
NN ¼ 8 i=2

diagðΓR;ΓR;ΓR;ΓRÞ. The less self-energies Σo
11 ¼ iΓLdiag½f ðϵ�

μLÞ; f ðϵþμLÞ; f ðϵ�μLÞ; f ðϵþμLÞ� and Σo
NN ¼ iΓR diag½f ðϵ�μRÞ; f ðϵþ

μRÞ; f ðϵ�μRÞ; f ðϵþμRÞ�. We can obtain Σo
11 from the relation

Σ4
11�Σo

11 ¼Σr
11�Σa

11. Keldysh Green's functions Go ;4 can be
derived by applying the Langreth relation to the Dyson equations
for the retarded Green's function. Finally, we obtain

Go ;4 ¼ GrΣo ;4Ga ð10Þ
Substituting the obtained Green's functions and self-energies into
Eqs. (7) and (8), we can obtain the shot noise and the corresponding
current in our system.

3. Results and analysis

We now present the numerical calculations and examine feature
of shot noise in superconducting wires with a periodic modulation
of the chemical potential at zero temperature. We take μR as the

Fig. 1. The quantum wire of topological superconductor sandwiched between two
normal leads. The periodic modulated chemical potential can be realized through
the control of gates.
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