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a b s t r a c t

We explore the transport behavior of interface and edge states in bent graphene under a magnetic field.
The bending angle can change the distribution of interface and edge states, resulting in an interesting
evolution of quantized conductance. The interface state vanishes when the bending angle is not less than
π=2, whereas the edge state remains. In the presence of Zeeman splitting, the transport properties are
also considered and a quantum spin Hall effect is found. These results may provide a way to control the
interface current.

& 2015 Published by Elsevier Ltd.

1. Introduction

Graphene has attracted great attention since it was successfully
fabricated in experiment. It is the first truly two-dimensional
material and has many unconventional properties [1,2], such as the
linear dispersion [3,4] and quantum Hall effect [5,6]. Due to the linear
dispersion near zero energy, the quantum Hall effect in graphene is
characterized by chiral edge states and the quantized conductance is
given by σxy ¼ 4ðnþ1=2Þe2=h with n being an integer [5]. However,
the quantum spin Hall (QSH) effect, which is characterized by helical
edge states, is also predicted in graphene [7,8] and was later
experimentally realized in HgTe/CdTe quantum well [9,10]. These
helical edge states are fully spin-polarized formed by counter
propagating edge states with opposite spins and are preserved by
time-reversal symmetry [7,8]. Moreover, electron transport proper-
ties of graphene have been extensively studied in electric and
magnetic fields [1,2], and some interesting results have been
obtained, such as particular transport properties in graphene with
multiple magnetic barriers [11,12] and tunable controllable electronic
states in graphene by both electric and magnetic fields [13].

Two-dimensional graphene can be bent into the third dimen-
sion without degradation to its structural properties and electron
transport [14–16]. Therefore, the bent graphene has also been a
focus of intense interest. The bend effectively produces a new type
of Hall edge state along the bent region [17–19], leading to some
novel transport properties in bent graphene [20–22]. The effect of
bending curvature has been studied in bent graphene [18,23]. The
tight-binding approximation in planar graphene only considers

the π and πn bands due to the hopping between pz orbitals
perpendicular to graphene plane. However, there is a curvature-
induced misalignment of the pz orbitals in bent graphene. Thus,
the hopping integral should be modified as t0 ¼ t cosα (α is the
misalignment angle between pz orbitals) [18].

This provides a train of thought for us to study the transport
properties of bent graphene. In this work, we consider the bent
graphene ribbon depicted schematically in Fig. 1(a). It consists of a
graphene ribbon with a zigzag edge bent along the x direction. The
graphene ribbon is bent into a wedge shape, as shown in Fig. 1(c).
The bending angle θ between two planar regions is an arbitrary
value. The bent graphene ribbon is divided into three regions, top
planar region (TR), bottom planar region (BR) and middle bent region
(MR). The magnetic field B

!
is in the z direction and perpendicular to

the BR of bent graphene, as shown in Fig. 1(c). We study the effect of
bending angle to interface states, edge states and quantized con-
ductances in a magnetic field. By changing of the bending angle,
different interface and edge states are found in the bent graphene
ribbon. Besides, the effect of curvature-modified hopping integral
and width of the MR is also considered. The results show that they
hardly affect the spatial distributions of interface and edge states.
Finally, we discuss the electron transport property in the presence of
Zeeman splitting and find that the system can host a QSH phase.

2. Model and method

In a perpendicular magnetic field B
!¼ ð0;0;BzðxÞÞ, the Hamil-

tonian of tight-binding model takes the form

H¼ �t
X

〈ij〉

ðeiϕij c†i cjþh:c:Þ; ð1Þ
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where t is the nearest-neighbor hopping integral on the honey-
comb lattice and ϕ is the gauge potential for the nonuniform
magnetic field. The operator c†i ðciÞ creates (annihilates) an electron
at site i, and 〈ij〉 denotes nearest-neighbor sites.

In terms of the Landauer–Büttiker formula, the conductance
with spin σ can be calculated by the equation Gσ ¼ Tσe2=h [24–26].
The transmission coefficient Tσ from lead r to lead l with spin σ is
described by

Tσ ¼ Tr½ΓlσG
R
σΓrσG

A
σ �; ð2Þ

where Γℓσ ¼ i½ΣR
ℓσ�ΣA

ℓσ � is the coupling between conductor and
lead ℓ ðℓ¼ l; rÞ with ΣR=A

ℓσ being the self-energy. The retarded
Green's function of the sample GR

σ has a form
GR
σ ¼ ½GA

σ �† ¼ ½E�Hc
σ�ΣR

lσ�ΣR
rσ ��1, where Hc

σ is the Hamiltonian
of the conductor region.

3. Results and discussion

In Fig. 1(a), we show the bent graphene ribbon under a uniform
magnetic field. The system can be described by a topological
equivalent geometry suffering an effective magnetic field shown
in Fig. 1(b) and (d). The magnetic field B

!
is perpendicular to BR,

whereas the field is �B cosθ [θ is the bending angle shown in
Fig. 1(c)] in TR. In MR, the effective magnetic field is the normal
component of magnetic field, B

!� n̂ [17], where n̂ is normal to the
ribbon. The angle between the tangent of each point in MR
undergoes a uniform change by assuming a smooth arc in the MR.

To analyze all possible interface and edge states, we choose a
graphene ribbon with zigzag edge, where an open (periodic)
boundary condition is taken in the x(y) direction, as shown in
Fig. 1(a). By diagonalizing the Hamiltonian equation (1) on a
rectangular sample under a nonuniform magnetic field, we obtain
energy spectrums for different bending angles, shown in the top
panel of Fig. 2. Due to the particle-hole symmetry, the electron
energy spectrum is symmetrical about zero energy which is similar
to that of pristine graphene [1]. However, the band structure of bent
graphene is different from the case of pristine graphene in a uniform
magnetic field, because the bend changes the distribution of effective

Fig. 1. (a) A zigzag-edge graphene ribbon is bent along the x direction. The uniform
magnetic field B

!
is perpendicular to the bent graphene ribbon. (b) A topological

equivalent geometry obtained by unbent graphene ribbon. TR, BR and MR
correspond to top planar region, bottom planar region and middle bent region
respectively in (a). Lx represents the width of the MR. (c) The plane projection of
(a) and θ is the bending angle. (d) The profile of the effective magnetic field in an
equivalent unbent graphene ribbon.

Fig. 2. Top panel: the electron energy spectrum of bent graphene ribbon with ϕ¼ 0:002 and Lx � 28:4 nm. Middle panel: the spatial distributions of interface and edge states
indicated in the top panel labelled by the letters a, b, c and d. Nx represents lattice indexes. Bottom panel: the corresponding calculated conductance for the bent graphene ribbon.
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