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a b s t r a c t

The electronic structure and transport properties of twisting graphene nanoribbons (TGNRs) are
systematically investigated using the tight-binding model and the non-equilibrium Green’s function
method. We show that the energy gap and conductance around the Fermi energy can be reversibly
modulated. Armchair TGNRs (ATGNRs) can be either metallic or semiconducting depending on the
widths and the twist angles of the GNRs. Semiconductor–metal and metal–semiconductor transitions
are observed in ATGNRs for N¼3iþ1 (where i is an integer and N is the number of atoms along the width
of the nanoribbon) and N¼3iþ2, respectively. Narrow ATGNRs are semiconductors for N¼3i, whereas
zigzag TGNRs (ZTGNRs) are metallic regardless of the width and distortion of the GNRs.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene was first created in experiments in 2004 and become
known for exhibiting unusual properties, such as electrons that
behave as massless relativistic Dirac fermions [1], carriers with
high-speed mobility [2,3], a room-temperature quantized Hall
effect [2,3], a high mechanical strength [4], and unique electrical
supercurrent properties [5]. Graphene can support Cooper pair
transport, which results in the well-known Josephson effects [6].
All of these properties make graphene an important potential
candidate for nanoelectronic applications.

Recently, quasi-one-dimensional graphene nanoribbons (GNRs)
have attracted considerable attention because of their promising
potential as elementary building blocks for nanoelectronic and
spintronic applications. These GNRs have been prepared by
mechanically cutting exfoliated graphene [7,8], unzipping single-
walled nanotubes along the graphene axis [9,10], or patterning
epitaxially grown graphene [11,12]. The electronic structures of
GNRs with different edge shapes can be modulated by imposing
hard-wall boundary conditions on the Schrödinger equation
within the single π tight-binding model or on the Dirac equation
for a two-dimensional massless particle [13–16]. The results
indicate that GNRs with armchair-shaped edges can exhibit either
metallic or semiconducting behavior depending on the GNR width
and that GNRs with zigzag-shaped edges exhibit metallic behavior

with unusual edge states on both sides of the ribbon regardless of
the GNR width.

The physical properties of graphene, such as its broadband
optical response, thermal conductance, and electronic structure,
are generally known to depend strongly on the geometrical struc-
ture of graphene, which can be deformed because of the flexibility
of graphene. Therefore, the geometry-dependent physical properties
of various graphene structures have been recently explored [17–21].

In the present study, the geometry-dependent electronic prop-
erties of twisting graphene nanoribbons (TGNRs) are investigated
using the tight-binding model and the non-equilibrium Green’s
function method [22,23]. GNRs with armchair-shaped edges and
GNRs with zigzag-shaped edges on both sides can be convention-
ally classified in terms of the number N [15], as shown in Fig. 1.
Semiconductor–metal and metal–semiconductor transitions are
observed in armchair TGNRs for N¼3iþ1 (where i is an integer)
and N¼3iþ2, respectively. The zigzag TGNRs are metallic,
whereas the armchair TGNRs are semiconductors for N¼3i. We
used the aforementioned results to develop an armchair-TGNR-
based metal–semiconductor modulator that performs analogous
operations to those of a rheostat in electronic circuits.

2. Model and method

A planar GNR can be twisted along its central symmetrical axis (i.e.,
the x-axis) to produce two types of TGNRs. We denote an armchair
TGNR of width N as an N-ATGNR and a zigzag TGNR of width N as an
N-ZTGNR. The twist angle for a unit cell is denoted by θ¼2π/p, where
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a fixed cycle length of the TGNRs includes p unit cells of planar GNRs,
and α denotes the twist angle of the TGNRs. Fig. 1 is the structural
model of a 10-ATGNR with θ¼2π/56. In this calculation, the max-
imum distance between two near-neighbor atoms is restricted to
1.9 angstroms. Thus, the electronic properties of TGNRs can be
effectively described using a single-π orbital. The electron mean-free
path in graphene is much longer than the size of a TGNR; thus,
electron–electron and electron–phonon interactions are neglected
here. Throughout this paper, we assume that the dangling bonds on
the edge sites are terminated by hydrogen atoms and that these bonds
do not contribute to the electronic state around the Fermi level.

The tight-binding Hamiltonian of the system can be written as

H¼∑
i
εicþi ciþ∑

i;j
γ0f ðrijÞcþi cj; ð1Þ

where εi denotes the on-site potential. The hopping parameter
γ0¼�2.7 eV and is modified by the factor f ðrijÞ ¼ e�3:37ðrij=a0 �1Þ

[24] (rij is the distance between the i and j atoms and a0 ¼ 1:42 Å).
The creation and annihilation operators at sites i and j are denoted
by {ciþ , cj}, respectively. The transmission coefficient between the
left and right leads can be calculated using [22,23]

T ¼ TrðΓLG
rΓRG

aÞ; ð2Þ

where ΓL(R)¼ i[Γ†
L(R)�ΓL(R)] denotes the coupling of the device to

the left and right leads. Gr;a are the retarded and advanced Green’s
function matrices of the device, respectively. From Landauer
theory, the conductance G through the central sample is given
by G¼(2e²/h)T. The density of states (DOS) of the corrugated GNRs
is calculated using the formula DOS¼ �ð1=πÞIm½TrGrðEÞ�.

The generalized Landauer approach can be used to derive the
tunneling current as

I¼ 2e
ℏ

Z
dET Eð Þ f 1 E�uLð Þ� f 2 E�uRð Þ� �

; ð3Þ

where the factor of 2 accounts for degeneracy, and f 1ðE�uLÞ and
f 2ðE�uRÞ are the Fermi energy functions of the incident waves
from the two leads to the TGNRs. Note that the objective of this
study is only to calculate the phase-coherent transmission coeffi-
cient. Therefore, the effect of electron–phonon interaction can be
neglected, and the temperature dependence only arises from the
Fermi factors of the electrons.

3. Results and discussions

First, we compute the band gaps of the armchair GNRs as a
function of the ribbon width N, as shown in Fig. 2(a). The variation
in the band gaps exhibits two distinct types of behavior, which is
similar to that reported in Ref. [16]. An armchair GNR is shown to be
semiconducting for N¼3i and N¼3iþ1; otherwise, the armchair
GNR is metallic. The band gaps of the semiconducting GNRs decay
exponentially with increasing width. Incorporating the twist effect
results in three well-separated categories (or families of structures)
of band gaps as a function of θ, as shown in Fig. 2(b)–(d).
The energy gap of an N-ATGNR for N¼3i first increases and then
decreases with increasing θ. A narrow N-ATGNR behaves as a
semiconductor for N¼3i. The trends of the band gaps shown in
Fig. 2(b) are used to predict a semiconductor–metal transition for
wide ATGNRs with increasing θ. Fig. 2(c) and (d) show that the
semiconductor–metal–semiconductor and metal–semiconductor

Fig. 1. (a) Structural model of a 10-ATGNR with θ¼2π/56: the ribbon is assumed to
be infinite in the x-direction; carbon atoms are depicted as gray balls, and blue balls
denote the spatially resolved LDOS of the ATGNR at the Fermi energy (α¼π/2);
(b) spatially resolved LDOS for the 10-ATGNR for θ¼2π/14 at the Fermi energy
(α¼2π). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. Variation in band gaps of ATGNRs for various N versus twist angle θ, as obtained from tight-binding calculations for t¼3 eV: (a) N¼3i, (b) N¼3iþ1, and (c) N¼3iþ2.
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