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a b s t r a c t

Recently, rhombohedral graphite has been known to have a three-dimensional Dirac cone structure
composed of tilted anisotropic Dirac cones, as a result of the perturbative interlayer electron hoppings.
The corresponding Landau subbands have weak energy dispersions, a characteristic indicating the
possible occurrence of a three-dimensional quantum Hall effect in weak magnetic fields. Since the robust
zero-mode Landau subband should be topologically protected by the chirality of the Dirac fermions, here
we investigate the chirality for rhombohedral graphite with regard to the Dirac cone tilt and anisotropy,
for which there could exist phases mixing in the Landau subband wave functions. Both a perturbation
analysis and an exact diagonalization are performed for showing the effects of the interlayer hoppings
on the phases mixing. In the results the perturbations due to the interlayer hoppings are not resolvable.
Rhombohedral graphite turns out to have the same chiral nature as monolayer graphene. The
realizability of the three-dimensional quantum Hall effect in rhombohedral graphite is thus further
supported by the manifestation of chiralities.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The physics of Dirac cones in graphene gives new insight into
the electronic properties of many condensed-matter systems.
Besides the linear energy dispersion, there are 2-component wave
functions in monolayer graphene (MG) due to the biparticle
hexagonal lattice. A pseudospin degree of freedom arises [1], and
thus the Dirac fermions are characterized by the chirality, i.e., the
projection of the pseudospin on the direction of the momentum
[2]. The Dirac fermions in MG exhibit opposite chiralities and
acquire Berry's phase π around the two inequivalent Dirac points
(DPs). The chiral symmetry is further carried in the corresponding
Landau levels (LLs), of which the zero-mode LL is essential to the
unconventional quantum Hall effect (QHE) realized in MG [3,4].
Such an electronic structure is altered when graphene layers are
stacked and coupled. The massive Dirac fermions in bilayer
graphene have different chiral nature and display another type
of QHE [5]. In bulk graphite, a three-dimensional (3D) QHE with
multiple plateaus has been observed [6]. It was ascribed to
undoped rhombohedral (ABC-stacked) graphite (RG) or stacking
faults (say, in ABABCBCB sequence) [7], which are usually found to

be mixed with Bernal (AB-stacked) phase in natural graphite, as
opposed to the theoretical demonstration of only one plateau for
doped AB stacked graphite [8]. The ascription to RG can be further
consolidated by a recently proposed 3D Dirac cone structure as
follows [9].

RG is distinct from other stacks of graphene layers in that it has
a biparticle bulk lattice belonging to the R3m space group, which is
rhombohedral but not hexagonal [10,11]. In the dimensional
crossover from ABC-stacked finite-layer graphene to RG, the bulk
stack can be topologically nontrivial for the existence of surface
states [11,12]. The bulk band in RG is described by the 3D Dirac
cone structure that is composed of tilted anisotropic Dirac cones
[9]. The lined-up Dirac points (DPs), dominated by the nearest
interlayer tight-binding (TB) hopping, form two accidental band
contact lines spiraling in opposite senses in the bulk dimension
and surrounded by the famous sausage-link Fermi surface [13].
Within the minimal tight-binding (TB) model, which includes the
nearest interlayer hopping only, all the Dirac cones along the DP
spirals are equivalent to the normal ones realized in MG. The cone
tilt and anisotropy are the consequences of the remaining inter-
layer hoppings, which serve as perturbations to the normal Dirac
cones. Hence, the Landau subband (LS) energy dispersions in RG
are much weaker than in AA- and AB-stacked graphites [14,15];
in attainable field strengths, only RG has multiple LS bulk gaps
opened up as required for observing the 3D QHE.
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A deeper insight should be shed on the robustness of the zero-
mode LS, which is essential to the 3D QHE. It is noted that in
AA- and AB-stacked graphites the band contact lines are crucially
supported by the crystal symmetries [16]; therefore, those band
contact lines are not stable against impurities or crystal deforma-
tions. The corresponding zero-mode LSs are not ensured so that
the 3D QHE is difficult to observe in those two types of graphite.
It is well understood that, in general, the topological stability is
related to the chirality. According to the index theorem [2], or in
terms of explicit wave functions [17], the DPs of normal Dirac
cones are topologically protected by the chiral symmetry. Within
the first-order minimal model for RG, the DP spirals can be shown
to be topologically stable, characterizing RG as a kind of 3D
topological semimetal [12]; moreover, the 3D QHE can be
described in terms of the chiral LL wave functions that are a priori
casted for all the normal Dirac cones in the same way as for
MG [7]. However, it is not so obvious that the chirality can be
determined for an abnormal Dirac cone because the components
of the LL wave function could be mixed. It seems unreasonable to
presume the chiral nature for RG in view of the experimental
finding of the 3D QHE [6], of which the origin might also be
ascribed to stacking faults [7]. Thus, it is desirable to investigate
the chiral nature of RG with respect to Dirac cone tilt and
anisotropy beyond the minimal model. Indeed, tilted anisotropic
Dirac cones also appear in deformed graphene or certain 2D
organic metals [18], and the generalized chiral symmetry can be
defined and shown to protect the zero-mode LL [19]. This com-
munication is devoted to the LS wave functions and the chirality
for RG. It is worthwhile to mention the recent experimental
chirality manifestation for the Dirac cones in MG, which can be
extended for 3D topological insulators such as Bi2Se3 and Bi2Te3
[20,21].

We start with an analysis of the low-energy LS wave functions
in RG to show the perturbative effects of the interlayer hoppings.
In an attempt to resolve the perturbations, an exact diagonaliza-
tion is subsequently performed based on the magnetic translation
symmetry, which provides a full-zone calculation and allows us to
take into account all the interlayer hoppings. We adopt a non-
primitive hexagonal unit cell to cope with the in-plane magnetic
translation and consider the incommensurability between the
hexagonal and the rhombohedral Brillouin zones (BZs). Our goal
is to determine the effects of the interlayer hoppings on the phase
mixing in the exactly obtained LS wave functions. The present
method should be applicable to other rhombohedral systems,
including certain 3D topological insulators where the phase
mixing could be considerable.

2. 3D Dirac cone structure

The bulk lattice of RG is generated by the primitive unit vectors
a1;2;3, which add up to a vector in the direction of the c-axis, as
shown in Fig. 1(a). The primitive unit cell is embedded in a
hexagonal cell with triple volume [10,11]. The biparticle lattice
(A, B) in the periodic ABC-stacking configuration is decomposed
into six sublattices (Al, Bl) as shown in Fig. 1(b), where lð ¼ 1;2;3Þ
is the layer label. The lattice constant of each sublattice is
a¼2.46 Å and the interlayer distance is d¼3.37 Å. The relation of
the first rhombohedral Brillouin zone (BZ) to the hexagonal BZ is
illustrated in Fig. 2(a), a projection on a certain section defined by
the coincident high-symmetry points of both BZs. We consider a
nearest-neighbor TB model that includes interlayer hoppings up to
next-adjacent layers. Referring to Fig. 1(b), the following hopping
integrals are given: β0 ¼ �2:73 eV, β1 ¼ 0:32 eV, β3 ¼ 0:29 eV,
β4 ¼ 0:15 eV, β2 ¼ �0:0093 eV and βð0Þ

5 ¼ 0:0105 eV [22].

The TB Bloch states are written as jψ S〉k ¼N�1=2 ∑RS exp ðik�
RSÞjS〉, with 〈rjS〉 being the 2pz atomic functions, S¼ A;B, where the
summation runs over the N lattice points at RS [13]. On this basis,
the full-zone Hamiltonian matrix is written as

H11 ¼H22 ¼ 2β4 Rff ðkx; kyÞ exp ð� ikzÞg;

H12 ¼Hn

21 ¼ β1 exp ðikzÞþβ0f ðkx; kyÞþβ3f
nðkx; kyÞ exp ð� ikzÞ; ð1Þ

with the β2 and βð0Þ
5 hoppings being neglected, and f ðkx; kyÞ being

the nearest-neighbor in-plane TB hopping amplitude. The low-
energy band structure can be analyzed within the continuum
approximation near the two edges of the hexagonal zone
ð2πξ=ð

ffiffiffi
3

p
aÞ;2πξ=ð3aÞ; kzÞ, ξ¼ 71 as specified in Fig. 2(b), where

the 2D projections of the edges are denoted by K
ðξÞ
. The in-plane

wave vectors ðκx; κyÞ ¼ ðkx; kyÞ�K
ðξÞ

are respectively defined with
the κx axes directing from the edges K

ðξÞ
to the center line (Γ ) of

the hexagonal zone [Fig. 2(b)]. The momentum phase ϑz ¼ kzd
arises from the interlayer hoppings. We can thus derive the
locations of the DPs, which are dominated by the β1 hopping and
have their coordinates off the edges at κD ¼ β1ðv0ℏÞ�1½1þðv3=v0Þ
cos 3ϑz� and ϑD ¼ �ξ½ϑzþðv3=v0Þ sin 3ϑz� [9,13], where v0, v3 and
v4 are the absolute values of β0, β3 and β4 multiplied by

ffiffiffi
3

p
a=ð2ℏÞ,

respectively. These two DP spirals are found in the rhombohedral
BZ from �π=3d to π=3d with opposite spiraling senses, as shown in
Fig. 2(a). It is noted that, of the six DP spirals surrounding the six
hexagonal edges, another two are found in the rhombohedral BZ
from �π=d to �π=3d, and the remaining two from π=3d to π=d.
The DP spirals are topologically stable as long as the space-time
inversion symmetry of RG is not broken [12].

Fig. 1. (Color online) (a) Crystal lattice of RG, with the primitive rhombohedral cell
(red) and the hexagonal cell (blue). (b) Periodic ABC stacks in bulk RG, within which
the electron hoppings are indicated. (c) Schematic supercell with m¼4. The
jð ¼ 1;2;…;8Þth Sl atom (S¼A, say) is labeled. (d) Illustration of folding from the
2D hexagonal BZ to a rectangular BZ and, further, to the magnetic BZ for the m¼4
supercell.
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