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a b s t r a c t

Theoretical and numerical calculations of two-phonon processes on gated lateral semiconductor quantum
dots (QDs) are outlined. A heterostructure made with two laterally coupled QDs, in the presence of an
external magnetic field, has been employed in order to study the electron scattering rate due to two-phonon
processes. The formalism is based on the acoustic phonon modes via the unscreened deformation potential
and the piezoelectric interaction whenever the crystal lattice lacks a center of inversion symmetry. The rates
are calculated by using second order perturbation theory. The strong dependence of the scattering rate on
the external magnetic field, lattice temperature and QDs separation distance is presented.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The gated lateral semiconductor quantum dots (QDs) in a quan-
tumwell (QW), in which the growth direction (z direction or vertical
direction) confinement is due to the higher bandgap of the barrier
material [1–8], have been proposed for use as quantum bits (qubits)
in quantum computer architecture several times. Decoherence due to
single electron confinement within a coupled QDs structure, which
plays the role of qubits (QBs), has two important channels. The
first channel is the Coulomb interaction to the background charge
fluctuation and the second is the electron–phonon interaction.
Furthermore, physical properties of semiconductor-based QBs rele-
vant to single electron spin and charge degree of freedom have been
a subject of theoretical studies [6]. Notice that for charge qubits there
is only a single electron in a double dot, in contrast with spin qubits,
where each quantum dot has one electron and the double dot is only
for two-qubit operations [1,2].

The effects of charge decoherence due to electron–phonon inter-
actions are of crucial importance in semiconductor-based quantum
computer architecture. In our recent works [9,10], we have shown that
the scattering rates due to electron–acoustical phonon interactions
and the dephasing rates due to the coupling of electrons to acoustical
and optical phonons strongly depend on the interdot distance and the

strength of the electron confinement. The multiphonon processes [11]
among other scattering mechanisms (e.g. one phonon process,
electron–electron, and spin–phonon interactions) can describe and
measure the decoherence in QDs. Earlier theoretical work, in multi-
phonon processes in single three dimensional QD made with GaAs in
which the electron confinement potential is assumed to be isotropic
and parabolic, was reported two decades ago [12]. In their theoretical
work, they used a few possible processes using longitudinal acous-
tical (LA) and longitudinal optical (LO) phonons which were mainly
described by bulk phonon approximation [13]. This theory serves
laser nanotechnology interests and handles the photoluminescence
degradation in small QDs. According to the best knowledge of the
authors, the relaxation rates (source of charge decoherence in qubits
and in optoelectronic devices) due to multiphonon processes in
laterally coupled QDs in the presence of an external magnetic field
and for a range of operating temperatures have not been reported.

In this paper, our study related to two phonon processes in
coupled QDs under the existence of an external magnetic field
and their role in charge decoherence is presented. Starting with
Section 2, we firstly give a theoretical motivation of the electron
wavefunctions and phonon model which describes the deformation
and piezoelectric types of electron–phonon interactions. Secondly,
we present the equation of electron scattering rates due to the
second order perturbation term which describes the two-phonon
processes. In Section 3, we show the relaxation rates due to two-
phonon processes and we discuss their dependence on several
configurations. Lastly, Section 4 presents a summary of our results
and future implementations.
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2. Theory

We consider a heterostructure composed of two laterally
coupled QDs. In order to calculate the electron states within the
coupled system, we have used a one-band effective mass approx-
imation. The Hamiltonian which describes the single-electron
motion [14] which is confined in laterally coupled QDs is given by

Ĥ ¼ Ĥ J þĤz ð1Þ

where the lateral motion of electron is decoupled from the one
along the quantum well growth (z-axis) [9,15]. The external
magnetic field is applied along the z-axis ðB¼ BêzÞ, and as a result
the magnetic vector potential A could be given as

A¼ Bð�yêxþxêyÞ=2 ð2Þ

The Hamiltonian operators for the lateral directions and z-direc-
tion have been considered as

Ĥ J ¼ p̂2

2mn
þ1
2
mnω2r2J �

1
2
ωcLz ð3Þ

Ĥz ¼ �ℏ
2
∂z

1
mnðzÞ∂zþV0Θðjzj�L0Þ: ð4Þ

where Lz is the operator of the z component of the angular
momentum, mnðzÞ is the electron effective mass, V0 is the offset
between the band edges of the GaAs well and the AlGaAs barrier,
Θ is the Heaviside step function, p̂ is the quantum mechanical
operator of momentum, ω0 is a parameter describing the strength
of the confinement in the x–y plane, ω¼ Be=mn and ω2 ¼ω2

0þ
ðωc=2Þ2.

According to Eq. (1), electron wavefunction can be given by the
following envelope function:

ψ ðrÞ ¼ψ J ðr J Þψ zðzÞ: ð5Þ

In our investigation, we have only considered the ground state
wavefunction along the QW growth and the wavefunction along
the lateral direction is given by Fock–Darwin states. Following
the same procedure as [9], we have considered that the external
confining potential for the electron within two QDs structure is
given by

Vc ¼ 1
2m

nω2
0 min ðx�αÞ2þy2; ðxþαÞ2þy2

n o
ð6Þ

where α is the separation distance of the dots. The electron
wavefunction of the coupled QD structure could be described by

Ψ ðrÞ ¼Ψ J ðr J Þψ zðzÞ ð7Þ

where the single electron wavefunction for the parallel plane is
given by

jΨ J 〉¼∑
k
Ckjψ k

J ;L〉þDkjψ k
J ;R〉: ð8Þ

A numerical scheme has been employed in order to calculate the
total wavefunction in the parallel plane of the coupled dot system.
In low dimensional structures, the electrons interact with acous-
tical and optical phonons. The optical phonons do not have any
contribution to electron scattering rates due to the small electron
energy splitting. Therefore, only the acoustical phonons contribute
to the relaxation rates. In this work, we calculate the electron
scattering rate which is caused due to deformation potential and
piezoelectric acoustic phonon interaction [16–18]. The Hamilto-
nian which describes these interactions is given by

H ¼∑
q

ℏ
2ρmVωq

� �1=2

MðqÞρðqÞðaqþa†�qÞ: ð9Þ

The term MðqÞ, which includes both the deformation and the
piezoelectric interaction for zincblende crystals, is defined by

MðqÞ ¼Djqjþ iMpz
λ ðq̂Þ ð10Þ

with

Mpz
λ ðq̂Þ ¼ 2e e14ðq̂xq̂yξzþ q̂yq̂zξxþ q̂xq̂zξyÞ: ð11Þ

In Eqs. (9)–(11), ρm is the mass density of the host material, ωq is
the frequency of the phonon mode with wavevector q, V is the
volume of the sample, aq and a†�q are phonon annihilation and
creation operators, ρðqÞ is the electron density operator, D denotes
the deformation potential, e14 is the piezoelectric constant and ξ is
the polarization vector. All values of the abovementioned para-
meters used in our calculations have been taken from Ref. [18].

The last part of our theoretical formalism is the calculation
of the electron scattering rates due to two-phonon processes.
Considering only LA phonons, the scattering rates (second order
perturbation theory) are given by the following equations:
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where the indices þþ , �� , þ� represent the emission of two
phonons (LAþLA), the absorption of two phonons (�LA�LA) and
the emission of one phonon and absorption of one phonon
(LA�LA or �LAþLA) respectively. Mq

sf stands for the electron–
phonon matrix elements where the index i (f) corresponds to the
qubit electron first excited state (ground state) and s stands for
the intermediate electronic states. The other elements are taken
by changing the proper suffices. Nk (Nq) is the Bose distribution
function referring to phonons with energy Ek ¼ ℏωk (Eq ¼ ℏωq).
Note that the summation over s excludes the initial and final
states. The integrals, which are included in Eqs. (12)–(14) by
transforming the summations to integrations, have been calcu-
lated by the Monte Carlo code.

3. Results

Fig. 1 shows all possible scattering processes concerning the
electron transitions due to second order contributions associated
with acoustic phonons. The transitions described by Eqs. (12) and
(14) are presented in Fig. 1-I (Fig. 1b) and Fig. 1III (Fig. 1c)
respectively. It is worth mentioning that Eq. (13) creates two
different transitions as illustrated in Fig. 1-II (Fig. 1b) and Fig. 1-IV
(Fig. 1d). Using the results of the second order perturbation theory
(Eqs. (12)–(14)), we estimate the relaxation rates for an electron
which relaxes to the ground state via the two phonon processes.

In Fig. 2, we present the relaxation rates for the case of the
emission of a LA phonon and the absorption of a LA phonon
(LA�LA), as a function of an external magnetic field. Increasing the
magnetic field in the range of 0–12 T, the electron wavefunctions
get the largest value (resonance value) at B 3.7 T and as a result
the matrix elements involved in the two-phonon scattering
process increase. Furthermore, the increasing number of phonon
modes (for B¼0–4 T) that can be involved in the relaxation
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