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a b s t r a c t

We present an exact analytical method to calculate the electronic transmission coefficient of ferromag-
netic nanowires based on Green's function theory and tight-binding approach. To this end, we obtain the
spin-dependent self-energies of the nanowire due to the existence of ferromagnetic leads and derive the
elements of system Green's function matrix. Spin-dependent electron transport via some configurations
of a ferromagnetic nanowire including magnetic defects is investigated in detail. Further, we analyze
the electron reflection from an ideal semi-infinite magnetic chain with different moments at the edge.
The results can be useful to simulate and develop magnetic and spintronic nano-devices.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

To combine the miniaturization of nanoelectronics and spin
phenomena, the role of low dimensionality in the magnetic and
transport properties of materials becomes important [1,2]. Thanks
to the modern nanotechnology, it is possible today to build low
dimensional magnetic devices and to examine the interesting
results predicted by theoreticians. The Rashba [1,3], Aharonov–
Bohm [4–6], spin–orbit coupling [7] and Zeeman [1,8] effects are
usually studied in the mesoscopic systems under a magnetic field.
The last one deals with interaction of electron spin by internal or
external magnetic field and leads us to spintronics. Spintronics, a
branch of electronics that employs the spin of electron, becomes a
fast growing research field over the past decades [2,8,9]. The giant
magnetoresistance [10–12], spin valve behavior [8,13], magnetic
storage [14], spin filter [15] and injection of spin polarized currents
from ferromagnetic materials to paramagnetic materials [16,4] are
some important spintronic phenomena. Further, to investigate the
electrical spin injection such as spin transport, spin detection and
spin accumulation in magnetic and nonmagnetic nanowires
usually the electrodes are chosen to be ferromagnetic materials
[2,17–19]. Accordingly, the theoretical and experimental studies of

spintronic including ferromagnetic leads have been attracted a
great deal of interests in recent years.

The aim of this paper is to formulate the spin-dependent electron
transport through the nanostructures sandwiched between two
ferromagnetic leads at the tight-binding approach. Two most impor-
tant techniques which have been developed to solve the transport
problem of quasi-one-dimensional systems are Green's function and
transfer matrix methods. We employ the transfer matrix method to
obtain Green's function matrix elements analytically. We focus on
spin-dependent transmission coefficient of ferromagnetic nanowires
and derive an analytical formalism for the self-energies and trans-
mission coefficients of up and down spins. Moreover, we use the
model to study the effect of the magnetic defects on the electronic
transport of an ideal ferromagnetic chain.

The paper is organized as follows. In Section 2, we present an
analytical formalism to consider spin-dependent electronic trans-
mission of magnetic chain including three different parts. Further,
we apply this analytic formalism to some interesting configura-
tions of magnetic chains. In Section 3, we give some conclusions
and remarks. In Appendix A, we derive the transmission coeffi-
cient in terms of Green's function matrix elements which are
derived by using the transfer matrix method.

2. The model and formalism

In this section, we obtain an analytical formalism for the spin-
dependent transport of ferromagnetic nanowires. Suppose a magnetic
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chain is divided into three different regions, i.e., α¼ L, W, R.
Each region is explained by the following Hamiltonian:

Hα ¼∑
i
ðεαI� h

!
α � s!ÞC†

i Ciþβα∑
i
C†
i Ciþ1þh:c:; ð1Þ

where i¼ �1;…;0 stands for the L, i¼ 1;…;N identifies W and
i¼Nþ1;…;1 distinguishes the R region. Here, I is the unit matrix, εα
and βα are the spin-independent on-site and hopping energies of

region α, respectively, and the term h
!

α � s! describes the interaction

of electron spin with the magnetic field of atoms in region α. In the

spherical coordinates, h
!

α is specified by the amplitude hα (the spin

flip parameter), polar angle θα and azimuthal angle ϕα; and s! is the

Pauli spin operator having components of ðsx;sy;szÞ. Furthermore, C†
i

and Ci, respectively, are the row and column vectors of creation and

annihilation operators with c†i↑; c
†
i↓ and ci↑; ci↓ elements. The Hamilto-

nian for the left (right) contact reads

HWLðRÞ ¼HLðRÞW ¼ βWLðRÞC
†
0ðNÞC1ðNþ1Þ þh:c:; ð2Þ

where βWLðRÞ is the spin-independent hopping integral between the
left (right) lead and the center wire. In Fig. 1, we show that this
magnetic chain can be regarded as a ladder network with on-site
energies of εα7hα cos θα and hopping parameter of �hα sin
θα expð� ıϕαÞ. Now, we can follow the presented formalism in
Appendix A by introducing the following block matrices in Eq. (A.1):

Hi;i ¼
εW �hW cos θW �hW sin θWe� ıϕW

�hW sin θWeıϕW εW þhW cos θW

 !
; ð3aÞ

Hi;iþ1 ¼Hiþ1;i ¼ βWI; i¼ 2;…;N�1: ð3bÞ
This means all the atoms are the same except the first and last ones in
the center wire that is for these tow atoms, the magnetic and tight-
binding parameters can be different. In this paper, we assume that this
difference exists just in their magnetic moments. So, we represent the
magnetic moment vector of the first (last) site by hW1ðNÞ, θW1ðNÞ and
ϕW1ðNÞ components. By substituting Eqs. (3) in Eqs. (A.4), and after
simplification, we derive the following analytic formula for the system
transfer matrix:

ðPiÞN�2 ¼

f þN gþ
N � f þN�1 �gþ

N�1

g�
N f �N �g�

N�1 � f �N�1

f þN�1 gþ
N�1 � f þN�2 �gþ

N�2

g�
N�1 f �N�1 �g�

N�2 � f �N�2

0
BBBB@

1
CCCCA; ð4Þ

in which

f 7n ¼ cos 2ðθW=2ÞD7
n þ sin 2ðθW=2ÞD8

n ; ð5aÞ

g7
n ¼ 1

2 e
8 ıϕW sin θW ðDþ

n �D�
n Þ; ð5bÞ

where

D7
n ¼ λnþ1

7 �λ�n�1
7

λ7 �λ�1
7

;

with

λ7 ¼ ξ7
W þ½ðξ7

W Þ2�1�1=2:

Here, ξ7
W ¼ ðε�εW 7hW Þ=2βW are dimensionless parameters for the

magnetic center wire. In order to get the total spin-dependent
transmission coefficient, the self-energies of the center wire due to
the existence of magnetic leads are needed. The left (right) self-energy
can be calculated by the left (right) surface Green's function of the
center wire. The result for a lead with arbitrary magnetic parameters,
in the nearest neighbor tight-binding approach, gives

Σα ¼
Σþ
α Δþ

α

Δ�
α Σ �

α

 !
; α¼ L;R; ð6Þ

where

Σ7
α ¼ β2

Wα
βα

½ðξ7
α Þ2�1�1=2 cos 2ðθα=2Þþ½ðξ8

α Þ2�1�1=2
�

sin 2ðθα=2Þþε�εα7hα cos θα
2βα

�
;

Δ7
α ¼ β2

Wα
2βα

e8 ıϕα ½ðξþ
α Þ2�1�1=2�½ðξ�

α Þ2�1�1=2þhα
βα

� �
sin θα;

in which ξ7
α ¼ ðε�εα7hαÞ=2βα are dimensionless parameters for

the lead α¼ L;R. The relation jξþð�Þ
α jr1 determines the allowed

energy range for the electronwith spin up (down). The left (right) self-
energy is related to the left (right) broadening matrix as

ΓLðRÞ ¼ ıðΣLðRÞ �Σ†
LðRÞÞ:

Finally, the system transmission coefficient, TðεÞ, can be computed by
the following formula:

TðεÞ ¼ trðΓLG
†
N;1ΓRGN;1Þ: ð7Þ

where GN;1 is the left-most block of the wire Green's function matrix
and can be calculated by Eq. (A.3b). Now, all quantities in Eq. (7) are
provided and one can evaluate the total transmission coefficient of
magnetic junctions analytically.

By choosing the preferred direction of magnetic moments in
the leads at the z direction, we can simplify the matter. This
equivalents to the cases of θLðRÞ ¼ 0 and π corresponding to up and
down directions of magnetic moments, respectively. Therefore,
there are two transmission channels with energy bands of ε¼
εLðRÞ7hLðRÞ þ2βLðRÞ cos kLðRÞaLðRÞ, where aLðRÞ is the lattice constant
and kLðRÞ is the electron wave-number of the left (right) lead. In
these cases, four well-defined transmission coefficients can be
introduced as follows [20,21]:

Tss
0 ¼ 4 Im Σs

L Im Σs0
R jGss0

N;1 j2; ð8Þ
where s¼ ↑; ↓ and the Σs

LðRÞ from Eq. (6) for two angles of θLðRÞ ¼ 0
and π, respectively, read

Σ↑ð↓Þ
LðRÞ ¼Σ þð�Þ

LðRÞ ¼ β2
WLðRÞ
βLðRÞ

ðξþð�Þ
LðRÞ þ½ðξþð�Þ

LðRÞ Þ2�1�1=2Þ:

Also, Gss0
N;1 is the (i,j)th entry of GN;1 where iðjÞ ¼ 1;2 corresponds to

sðs0Þ ¼ ↑; ↓. The total transmission coefficient is

T ¼ ∑
s;s0

Tss
0 ¼∑

s
Ts; ð9Þ

where Ts ¼ T↑sþT↓s.
Without loss of generality and for the sake of simplicity,

hereafter we take all on-site and hopping energies in the system

cosh

cosh

sin ih e
h

x

y

z

Fig. 1. In the system α¼W , L, R, each atom with on-site energy εα and magnetic
moment h

!
α , specified by ðhα ; θα ;ϕαÞ in spherical coordinates, corresponds to an

effective ladder unit cell with εα7hα cos θα and �hα sin θαe7 ıϕα tight-binding
parameters.
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