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a b s t r a c t

The theoretical prediction that some materials might develop pure spin currents in response to strain is
presented. Such piezo-spintronic effect is studied and shown to be allowed by symmetry in several
systems. This mechanism opens up a way to obtain and measure pure spin currents. From a close analogy
with the theory of electric polarization and the piezoelectric effect, we show that such piezo-spintronics
response can be represented in a geometrical form in terms of spin Berry phases. Additionally, we
illustrate the ideas by the use of two toy models that displays a non-trivial piezo-spintronic response and
discuss on possible experimental realizations on antiferromagnetic insulators.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The phenomenon that certain kind of materials respond to
elastic deformations by becoming electrified is named piezoelec-
tricity. Piezoelectricity became an essential part of several applica-
tions within a few years after its discovery. Nowadays, the effect
plays a fundamental role in a great variety of applications ranging
from domestic electronics [1,2] to advanced microscopy measure-
ments on the atomic scale [3]. In this paper we show a prediction
of an analogous effect in the context of spintronics [4]. By means of
this effect, spin currents are expected to arise in response to strain
in structures lacking inversion symmetry. Additionally, we char-
acterize the main properties of this piezo-spintronic response and
discuss the basic features of the family of materials expected to
display the effect.

The intuitive notion of spin current is based on a picture with
different spin species flowing at different speeds. To accommodate
this notion within the formalism of quantum mechanics is a well
defined problem only in systems where the spin is a good
quantum number. In cases in which spin is not conserved such
as, for example, when the effects of spin orbit interaction are not
negligible, the problem is more subtle. In this work we shall use
the definition [7] given by

JSi;j ¼
dðŜ iR̂jÞ
dt

; ð1Þ

where R
!

corresponds to the electronic position operator. This
definition has several advantages. Naturally, it reduces to the intuitive
notion of spin current, JSz;j ¼ ℏð v!↑� v!↓Þj, when the spin is conserved.

Additionally, it is linked directly to a thermodynamical conjugated
variable [7]. It can be noticed that the above definition links the spin
current to the time derivative of the spin dipolar moment pS

i;j. In the
context of this paper all such properties will be used.

With a precise definition of spin current we proceed to analyze
the basic symmetry requirements imposed on the systems in order
to have a piezo-spintronic effect.

2. Macroscopic analysis

Interestingly, the spin current defined in Eq. (1) has a peculiar
behavior under space reflections. As shown in Fig. 1a, the axial
nature of the spin operator [10] enforces the spin current to
transform as a pseudo-tensor under reflections. On the other hand,
the spin current defined in Eq. (1) is even under time reversal. This
is in contrast with charge currents that transform as an odd
operator under time reversal. With these two properties in mind
we will analyze the symmetry features that a system must display
in order to have a piezo-spintronic effect.

Let us suppose that under strain a spin current is generated in a
generic system (see Fig. 1b). Under distortion spin currents should
be expected, within the linear regime whenever there is a change
in the spin dipolar moment. For small enough deformations we
can generally expect a relation of the form:

pS
i;j ¼ λi;jklulk: ð2Þ

This equation constitutes the definition of the “piezo-spintronic”
tensor λ. In this equation, ulk ¼ ð∂kulþ∂lukÞ=2 corresponds to the
strain tensor [9], where u is the deformation field, and pS

i;j the spin
dipolar moment. Since the spin current is a pseudo-tensor, λ must
also behave as a pseudo-tensor [10]. Under an inversion transfor-
mation x!⟶� x!, λ must change sign. Therefore, like the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ssc

Solid State Communications

0038-1098/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ssc.2013.10.018

n Corresponding author. Tel.: þ56 0981595680.
E-mail address: alnunez@dfi.uchile.cl

Solid State Communications 198 (2014) 18–21

www.sciencedirect.com/science/journal/00381098
www.elsevier.com/locate/ssc
http://dx.doi.org/10.1016/j.ssc.2013.10.018
http://dx.doi.org/10.1016/j.ssc.2013.10.018
http://dx.doi.org/10.1016/j.ssc.2013.10.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2013.10.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2013.10.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssc.2013.10.018&domain=pdf
mailto:alnunez@dfi.uchile.cl
http://dx.doi.org/10.1016/j.ssc.2013.10.018


piezoelectric [1,11] and piezomagnetic effects [8,11], the piezo-
spintronic effect is restricted only to crystals classes lacking a center
of inversion. In addition to inversion symmetry breaking it is
important to emphasize that time reversal symmetry breaking is
required for a crystal to display piezo-spintronic effects. In principle,
a crystal might display simultaneously the piezoelectric, piezomag-
netic and piezo-spintronic effects. However, in the remaining parts of
the paper, we shall focus on a special form of the effect. It is easy to
realize that it is possible for certain structures under strain to display
exclusively the piezo-spintronic effect without giving rise to charge
currents. Let us denote by R and I the spin reversal and the spatial
inversion operators, respectively. Crystals invariant under the con-
secutive action of R and I cannot have a piezoelectric response. We
expect, therefore, that crystals classes invariant under RI will
respond with a pure spin-current to an external strain. This effect
is very similar to the piezospin polarization of charge currents that
arises due to strain-induced spin orbit interactions [5,6]. However
there are two main differences: first, as we shall see in the examples
the presence of spin-orbit interaction is not necessary in order to the
piezo-spintronic effect to be displayed, and second, there is no need
to have charge currents, indeed the prediction is made that in
systems with certain symmetries pure spin currents might be
generated by strain.

A natural way to understand the effect is to regard each spin
component manifesting opposite piezoelectric effects as shown in
Fig. 1c. Following standard notation that refers to the opposite
piezoelectric effects displayed by enantiomeric versions of quartz
crystals [1] as α- and β-like opposite responses, we say that the
pure piezospintronic effect can be understood as nothing more
than an α-like response for one spin polarization and the opposite
β-like response for the other spin polarization. The direction of
each piezoelectric effect is reversed under inversion, while the
spin labels remain equal. Therefore, there is a reversal of the piezo-
spin current. An additional spin reversal will restore the original
current.

3. Microscopic theory

Having shown the symmetry features that are needed for a
system to display the piezospintronic effect, we proceed to explain
how the piezospintronic response might be calculated in general.
The most convenient interpretation of Eq. (1) is obtained in terms
of the Berry phase theory of polarization [12,13]. Instead of
calculating the spin current directly, we proceed to evaluate it in

terms of the changes of spin current associated with an arbitrary
adiabatic deformation. Let the elastic strain be parametrized
through the dependence of electric potentials over some para-
meters Q. We regard the strain tensor as a function of the Q
parameters, uij ¼ uijðQ Þ as well as the electronic Hamiltonian
H¼HðQ Þ. The change in spin dipolar moment density in response
to a change in the external parameters Q-QþdQ , is

dpS
i;j ¼Aμ

i;jdQ
μ: ð3Þ

where

Aμ
i;j ¼ �∑

ν

Z
ddk

ð2πÞd
nνðkÞIm ∂ϕν

∂kj

� ����ℏsi ∂ϕν

∂Qμ

����
�

ð4Þ

These formulae are analogous to the one used in the theory of
polarization [13], the crucial difference being the Pauli matrix
lying in between brackets. This difference makes them appropriate
to evaluate changes in spin dipolar moments instead of changes in
polarization. Eqs. (3) and (4) are the basis for all the results of this
paper. Starting from them we can calculate the piezo-spintronic
response of any material. Such task is achieved by integrating Eq.
(3) over the path, γ in parameter space (Q-space) that is swept by
the system due to the strain:

δpS
i;j ¼

Z
γ
Aμ
i;j dQ

μ: ð5Þ

The symbol δpS stands for the accumulated spin dipolar moment
during the process of distorting the system from a reference
configuration into any other configuration. As shown in Eq. (1)
changes in the configuration are accompanied by spin currents
whenever δpS is non-zero. In order to show the validity of
Eqs. (3) and (4), we need to calculate the change in the spin dipolar
moment associated with infinitesimal and adiabatic changes in the
Hamiltonian. Following Eq. (1) the rate of change of pS with time
corresponds directly to the spin current: JS ¼ dpS=dt. The change in
the expectation value of the operator pS can be evaluated using a
corresponding Kubo formula:

dAμ ¼ Im iℏ ∑
νaμ

〈ψμjpSjψν〉〈ψνjdHjψμ〉

ðEμ�EνÞ2
 !

ð6Þ

Standard matrix element manipulations [7] lead to Eqs. (3) and (4).
In the remainder of this work, we illustrate the basic ideas

discussed so far with the aid of two toy models.

4. Antiferromagnetic toy model in 1D

The first system we consider is the case of an insulator with
electrons hopping along a dimerized antiferromagnetic spin chain
as shown in Fig. 2.

Let us consider a 1D tight binding Hamiltonian with a dimer-
ized structure.

H1 ¼ ∑
ℓ;μ

tℓðc†ℓμ cℓþ1μþc†ℓþ1μ cℓμ ÞþΔ ∑
ℓ;μ;ν

ð�1Þℓ c†ℓμ rzμν cℓν ð7Þ

Fig. 1. (Color online) (a) Axial vector properties of the spin are reflected in the spin
current tensor JS . The axial nature of the spin operator sz renders it invariant under
reflection on a mirror (M) in the xy-plane. In contrast, the velocity operator vz
changes sign, (b) illustration of the piezo-spintronic effect, distortion of the sample,
uxx (greatly exaggerated), from the equilibrium configuration (dashed lines) lead to
a spin current JS . Opposite distortions lead to opposite spin currents and (c) the
pure piezo-spintronic (PZSP) effect can be understood as two separated piezo-
electric effects (PZE), α and β, for each spin channel. This leads, under strain, to
opposite currents and a net spin current.

Fig. 2. (Color online) (a) Cartoon of a spin-Peierls chain. Electrons hop through an
alternating arrangement of local moments in a dimerized chain, (b) the non-
equivalent image of the system under R and I (Note that the system is invariant
under RI). A pure spin-current is expected to arise from strain.
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