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a b s t r a c t

Using quantum mechanical perturbation theory (PT) we analyze how the energy of perturbation of different
orders is renormalized in solids. We test the validity of PT analysis by considering a specific case of spin–
orbit coupling as a perturbation. We further compare the relativistic energy and the magnetic anisotropy
from the PT approach with direct density functional calculations in FePt, CoPt, FePd, MnAl, MnGa, FeNi, and
tetragonally strained FeCo. In addition using decomposition of anisotropy into contributions from individual
sites and different spin components we explain the microscopic origin of high anisotropy in FePt and CoPt
magnets.

Published by Elsevier Ltd.

The magnetocrystalline anisotropy is a central magnetic prop-
erty for both fundamental and practical reasons [1–3]. It can
depend sensitively on many quantities such as dopants or small
changes in lattice constant [4]. While control of this sensitive
quantity can be crucial in many applications, e.g. permanent
magnetism [5], magnetooptics [6] and magnetoresistive random-
access memory devices [7], it is often unclear what mechanisms
are responsible for these anisotropy variations, even from a
fundamental point of view. It was understood long ago [8,9] that
the magnetic anisotropy energy (MAE) K in bulk materials is a
result of simultaneous action of spin–orbit coupling (SOC) and
crystal field (CF). While in general this statement is still valid,
existing microscopic methods do not accurately describe K in the
majority of materials. One can calculate MAE using ab initio
electronic structure methods based on the density functional
theory, however a quantitative agreement is often rather poor. In
any case such methods are usually not well equipped to resolve it
into components that yield an intuitive understanding, to enable
its manipulation and control. Sometimes K is analyzed in terms of
SOC matrix elements of ξl � s, where ξ is the SOC constant.
However, this perturbation also induces changes in other terms

contributing to the total energy, which can affect the MAE as well.
Below we show how the actual atomic SOC is ‘screened’ in crystals
and study spin decomposition of SOC and MAE in real world
magnets.

Let us write the total Hamiltonian of magnetic electronic
system as

H¼H0þV ; ð1Þ
where H0 is the non-relativistic Hamiltonian (sum of kinetic and
potential energies of electrons) and V ¼ ξl � s is the SOC Hamilto-
nian. We assume that ξ is small relative to CF and spin splittings. The
change in the total energy of the system when SOC is added (below
we call it relativistic part of the total energy) can be written as

E¼ΔE0þEso; ð2Þ
where Eso is the matrix element of SOC with full perturbed
wavefunction and ΔE0 is the induced energy change of the scalar-
relativistic Hamiltonian (sum of kinetic and potential energies) due
to the SOC perturbation.

Using standard quantum mechanical perturbation theory (PT)
each quantity jϕ〉¼∑jn〉; E¼∑EðnÞ and Eso ¼∑V ðnÞ (wave function,
total energy and perturbation V) can be expressed as a sum over
orders n: V ðnÞ is proportional to ξnþ1, while jn〉 and EðnÞ are of order
ξn. Here and hereafter we use superscripts in parentheses
to denote the order of perturbation term of the corresponding
quantity. Corresponding expansions can be introduced for the total
MAE and MAE due to the SOC term as K ¼∑K ðnÞ and Kso ¼∑K ðnÞ

so .
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If j0〉 is an eigenvector of unperturbed system ðH0Þ then the
total perturbation energy can be found as

E¼∑
n
EðnÞ ¼∑

n
〈0jV jn〉¼ 〈0jV jϕ〉 ð3Þ

(see, for instance, Eq. 5.1.37 in Ref. [10]). It is now straightforward
to show that

Eso ¼ 〈ϕjV jϕ〉¼∑
n
nEðnÞ; ð4Þ

so the sum of kinetic and potential energies' change can be
presented as

ΔE0 ¼∑
n
ð1�nÞEðnÞ ¼ ð〈0j�〈=ϕjÞV jϕ〉: ð5Þ

The last expression can be directly evaluated to estimate a
reaction of the system to the original perturbation V. In our case
this reaction corresponds to joint action of kinetic and potential
energy terms (H0 in Eq. (1)). Eq. (4) is particularly convenient
for the analysis due to the opportunity to obtain site and spin
decompositions.

Let us consider again a specific case of SOC perturbation V ¼ ξl � s
in the second order of PT. In this case we have Eð2Þ ¼ Eð1Þso =2¼ V ð1Þ=2,
where V ð1Þ is obtained using wave function of the first order jϕ〉�
ðj0〉þj1〉Þ. Correspondingly, for the second order MAE

K ð2Þ ¼ K ð1Þ
so =2: ð6Þ

The second order correction to the total MAE due to SOC is a half of
the first order MAE due to SOC only. It is a simple consequence of
our perturbation treatment. One can immediately write down the
MAE in cubic systems where the leading term scales as ξ4, as
K ð4Þ ¼ K ð3Þ

so =4. Thus kinetic and potential terms effectively ‘screen’
75% of the original SOC MAE in cubic materials. Evidently higher
order contributions to total MAE decrease as 1=n relative to SOC
anisotropy. Thus the highest anisotropy can be naturally expected
only for a small n.

The specific form of the second order correction due to SOC has
been studied many times in different parts of solid state physics
[1,8,9,11] and can be obtained if we rewrite V ð1Þ as

V ð1Þ ¼ 2〈0 ξl � s 1〉¼ 2ξsð0Þi lð1Þi ¼ 2ξsð0Þi ∑
exc

〈0jlij1〉〈1jξsjljj0〉
ε'�ε0

�
�
�
�

�
�
�
�

¼ 2ξ2sð0Þi ∑
exc

〈0jlij1〉〈1jljj0〉
ε'�ε0

sð0Þj ¼ 2ξsð0Þi Λijs
ð0Þ
j ; ð7Þ

where we indicated the specific orders for spin and orbital
moments entering V ð1Þ, ε0 and ε0 are the ground state and the
excited state energy respectively for the unperturbed system, and
the sum is over all excited states. The leading relativistic correction
for the spin moment s appears only in the second order in ξ and
does not contribute to V ð1Þ. Below we assume that s does not
change from its zero order value. This result (Eq. (7)) is the familiar
expression [1,8,9,11] for the second order spin Hamiltonian due to
SOC, where orbital moment tensor Λ¼ lð1Þ=ξs . Correspondingly, in
the uniaxial system (assuming Λνμ is diagonal) we have K ð2Þ ¼
ξsðlð1Þz � lð1Þx Þ ¼ ξ2s2ðΛ? �Λ J Þ.

One can regard the total relativistic energy as the energy
change due to the ‘atomic’ SOC (i.e. matrix elements of ξl � s),
‘screened’ or reduced by adjustments in other contributions to the
total energy. The same evidently holds true for the total relativistic
energy change relative to SOC energy alone even in the nonmag-
netic case. One can rewrite Eq. (2) as

E¼ΔE0þ 〈ξl � s〉¼ 〈 ~ξl � s〉 ð8Þ
where ~ξ is a screened or effective crystal SOC constant as opposed
to the atomic or nonrenormalized ξ. We call ~ξ=ξ ratio spin–orbit
reduction factor. One can compare this parameter with the enhance-
ment of SOC discussed in Ref. [12].

According to the above results (Eq. (4)) ~ξ ¼ ξ=2 (second order
correction) and ~ξ ¼ ξ=4 (fourth order correction). Thus the effec-
tive screening is minimal for systems with large SOC and non-
cubic symmetries. Evidently this conclusion supports traditionally
large anisotropies observed in magnetic uniaxial systems.

Thus H0 term in Eq. (1), the sum of kinetic and potential
energies, reduces the effect of SOC and makes overall strength
twice smaller in second order, so KkinþKpot ¼ �Kso=2. Overall
the action of these terms is destructive for materials with
observed uniaxial anisotropy as total K is opposite in sign to
the anisotropy induced by kinetic and potential terms together:
K ¼ �ðKkinþKpotÞ. Also comparing Eqs. (4) and (5) one can see that
for arbitrary n ratio EðnÞso =E

ðnÞ
0 ¼ n=ð1�nÞ, thus for large n this ratio

tends to be equal to �1 meaning that SOC effects are nearly
completely screened in this limit.

Let us now consider electronic structure calculations for realis-
tic systems. Using the Vienna ab initio simulation package [13]
method we obtained the relativistic energy E¼ ðEr�EnrÞ and SOC
energy Eso in non-magnetic and magnetic systems, where Enr and
Er are total energies obtained in scalar relativistic and calculations
where SOC has been added (relativistic). The SOC is included [14]
using the second-variation procedure. The generalized gradient
approximation of Perdew, Burke, and Ernzerhof was used for the
correlation and exchange potentials. The nuclei and the core
electrons were described by projector augmented wave potentials
and the wave functions of valence electrons were expanded in a
plane-wave basis set with a energy cutoff between 348 eV and
368 eV for all compounds we investigated in this work. The k-
point integration was performed using a tetrahedron method with
Blöchl corrections with 13 800 k-points in the first Brillouin zone
corresponding to the primitive unit cell of L10 structure.

We compared the spin–orbit reduction factor α¼ Eso=E for Al
and non-magnetic Fe. The resulting α appears to be very close to
2 with small deviations of about 1–3%. For magnetic systems, we
also found that α� 2 for different magnetization directions.

MAE in L10 compounds and tetragonal FeCo had been well
studied [2,3,15–18]. The calculated MAE values are in a reasonable
agreement with previous calculations [2,3]. For CoPt, the discre-
pancy between current calculation and previous ones is rather
large. This is due to the exchange correlation potential used, our
LDA calculation gives a MAE about 1.3 meV/f.u., which is in better
agreement with previous calculations.

Here we investigated Kso=K in those systems and the results are
presented in Table 1. The anisotropic part of Eso appears to be
much smaller than the isotropic part, and deviations of Kso/K from
2 are already significant. For instance Kso=K in CoPt is 1.67–1.8
depending on the exchange-correlation potential used. Compared
with Eso, Kso is a much smaller quantity. The deviations of Kso/K
from the factor two in Table 1 are related to a deviation from a
second order PT. That includes both self-consistency effects and a
contribution from higher order terms of PT.

Table 1
c/a ratio (with respect to the primitive cell), calculated K and Kso/K ratio in uniaxial
magnetic systems. For all systems experimental structures have been used, while
for FeCo, we used hypothetical tetragonally strained structure.

Compounds c=a K (μeV/f.u.) Kso/K

FePt 1.362 2661 1.84
CoPt 1.379 837 1.67
FeNi 1.414 87 1.98
FePd 1.370 174 2.14
MnAl 1.294 287 1.98
MnGa 1.280 437 1.99
FeCo 1.1 216 2.21
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