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a b s t r a c t

We demonstrate theoretically that edge transport in quantum spin Hall bar can be controlled by in-plane
magnetic fields. The in-plane magnetic field couples the opposite spin orientation helical edge states at
the opposite edges, and induces the gaps in the energy spectrum. The hybridized electron wave
functions ψ↑ðx; kyÞ of the edge states can be destroyed with increasing the in-plane magnetic fields.
When the Fermi surface is located within this energy gap induced by the in-plane magnetic field, one
can expect that the conductance of the edge states becomes e2/h. By tuning the magnetic field and Fermi
energy, the edge channels can be transited from opaque to transparent. This switching behavior offers us
an efficient way to control the topological edge state transport.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Topological insulators (TIs), a strong spin–orbit coupling system,
exhibit rich and fascinating physics, which have been investigated
intensively both theoretically and experimentally [1–4]. The two-
dimensional (2D) TIs have been realized in HgTe quantum wells
(QWs) and InAs/GaSb QWs [5,6] by tuning the thickness of the QWs
or electric field [7–11]. HgTe is a narrow gap semiconductor with
very strong spin–orbit interaction (SOI) [12]. Strong SOI inverts the
band structure of HgTe, leading to a topological insulating phase. In
this phase, HgTe possesses an insulating in the bulk with a gap
separating the valence and conduction bands but with gapless
helical edge states that are topologically protected by the time-
reversal symmetry [13,14]. The existence of the helical edge states in
2D TIs was proved by recent experiments [15,16]. The helical feature
and suppressed backscattering render edge states an attractive
platform for high mobility charge- and spin-transport devices.

Since the topological edge states in 2D TI are protected by time-
reversal symmetry and robust against to backscattering, control of
the edge states, e.g., switch on/off, is a challenging issue from the
viewpoint of basic physics and potential device application.
Recently, there have been a few proposals to control the edge
state transport using a quantum point contact [17–20]. These
electrical means can control the transport, magnetic properties

and even quantum phase transition, and provide us an efficient
way to control spin transport [11,20–22]. It is natural to ask if there
is any other method to control the edge state transport?

In this letter, we study the effect of in-plane magnetic field on the
transport property of a quantum spin Hall (QSH) bar. The magnetic
field can lead to a large Zeeman term because of the large g factor of
HgTe material. The Zeeman term couples spin-up and spin-down
electron and holes, and induces the gaps in the energy spectrum.
Electrons with the opposite spin orientation at the opposite edges
couple together due to in-plane magnetic fields. And the density
distributions of hybridized electron wave functions ψ↑ðx; kyÞ become
more localized in the center of the QSH bar, indicating destroy of the
edge state. When the Fermi surface is located within this energy gap
induced by the in-plane magnetic field, one can expect that there is
only an edge state and the conductance of the edge states becomes
one-half of the conductance quantum 2e2/h. The in-plane magnetic
field can control the coupling between the edge states at opposite
edges and between the topological edge state and the bulk state.
Tuning the in-plane magnetic field, one can switch-on/off the edge
channel in the finite width QSH bar system when the Fermi energy is
the gap. This feature provides us an efficient means to control the edge
state transport in QSH bars.

2. Theoretical model

The total Hamiltonian for the system in the presence of an
external in-plane magnetic field is

H¼H0þHZ ; ð1Þ
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where the first term is the single-particle Hamiltonian of electron
in HgTe QWs and the second term HZ is the Zeeman effect. The
electron transport in the quasi-one-dimensional (Q1D) QSH bar is
along the longitudinal y-direction. The four-band single-particle
Hamiltonian H reads as

H¼

ϵkþMðkÞ Ak� geμBB 0
Akþ ϵk�MðkÞ 0 ghμBB

geμBB 0 ϵkþMðkÞ �Akþ
0 ghμBB �Ak� ϵk�MðkÞ

0
BBBB@

1
CCCCA; ð2Þ

where k¼ ðkx; kyÞ is the in-plane momentum of electrons,
ϵk ¼ CþVðx; yÞ�Dðk2x þk2yÞ with Vðx; yÞ being the confinement
potential, MðkÞ ¼M�Bðk2x þk2y Þ, k7 ¼ kx7 iky, A, B, C, D, and M
are the parameters describing the band structure of the HgTe/CdTe
QW. ge=h denotes electron or hole g factor, respectively. μB is the
Bohr magneton. B is the external transversal x-direction magnetic
field.

The transport property of a Q1D QSH bar can be obtained by
discretizing the Q1D system into a series of in-plane stripes along
the transport direction. Assuming a hard-wall in-plane confining
potential, the traveling-wave-like or evanescent-wave-like eigen-
states of the Schrödinger equation Hψ ¼ Eψ in a given region λ can
be written as the form

ψλðx; yÞ ¼ expðikλyyÞ∑
n
χλnφnðxÞ; ð3Þ

where

φnðxÞ ¼
ffiffiffiffiffiffi
2
W

r
sin

nπx
W

in whichW is the width of the lead, and the subband index n¼1,2,…
N with N being the number of the basis function which is chosen to
ensure the convergence of the energies of the low subbands near the
Dirac point. fχλng ðλ¼ L;RÞ are the expanded coefficients. The long-
itudinal wave vector kλy and the eigenvector χλn (n¼1,2,3,…)

are determined from the generalized eigenvalue problem [20].
Assuming an electron injected from a given energy with wave vector
kI
L in the left lead, the wave functions in the left lead and the right
lead can be written as

ψL ¼ eik
L
I y∑

n
χLI;nφnðxÞþ∑

mn
rmχLm;ne

� ikLmyφnðxÞ;

ψR ¼∑
mn
tmχRm;ne

ikRmyφnðxÞ: ð4Þ

By using scattering matrix theory, we can calculate the coefficients
rm, tm in the left and right leads. Thus we can obtain the total
conductance from the Landauer–Büttiker formula

G¼ G0 ∑
RM

m;n

υRm
υLn

tmj2;
�� ð5Þ

where G0 ¼ e2/h is the conductance unit, RM denotes the summation
over all right-moving modes in the left and right leads, tm is the
transmission coefficient where the electron incidents from the
subband n in the left lead to be scattered into the subband m in
the right lead, and υλm ¼ 〈υ̂λm〉¼ 〈∂H=∂ky〉 are the group velocity of the
electron in the subband m in the leads along the QSH bar, i.e., the y-
axis direction.

3. Numerical results and discussions

In the case of a QSH bar in the absence of in-plane magnetic
field, the finite size effect induces the overlap of the wave
functions of the edge states localized at the opposite edges, and
can open a minigap in the energy spectrum of the edge states at
ky¼0 (see Fig. 1(a)). The in-plane magnetic field couples the edge
states at the opposite edges (see Eq. (1)), and induces a mass term
for massless Dirac electrons in the edge states. Therefore the gaps
in the energy spectrum increase with increasing the magnetic
fields.
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Fig. 1. The energy spectra with width W¼200 nm under different in-plane magnetic fields (a) B¼0, (b) B¼0.5 T (c) B¼1 T, and (d) B¼2 T. The parameters used in the
calculation are A¼364.5 meV, B¼�686 meV nm2, C¼0, D¼�512 meV nm2, M¼�10 meV.
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