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a b s t r a c t

Idealized graphene monolayer is considered neglecting the van der Waals potential of the substrate and
the role of the nonmagnetic impurities. The effect of the long-range Coulomb repulsion in an ensemble
of Dirac fermions on the formation of the superconducting pairing in a monolayer is studied in the
framework of the Kohn–Luttinger mechanism. The electronic structure of graphene is described in the
strong coupling Wannier representation on the hexagonal lattice. We use the Shubin–Vonsowsky model
which takes into account the intra- and intersite Coulomb repulsions of electrons. The Cooper instability
is established by solving the Bethe–Salpeter integral equation, in which the role of the effective
interaction is played by the renormalized scattering amplitude. The renormalized amplitude contains
the Kohn–Luttinger polarization contributions up to and including the second-order terms in the
Coulomb repulsion. We construct the superconductive phase diagram for the idealized graphene
monolayer and show that the Kohn–Luttinger renormalizations and the intersite Coulomb repulsion
significantly affect the interplay between the superconducting phases with f -, dþ id-, and pþ ip-wave
symmetries of the order parameter.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most interesting properties of graphene is controll-
ability of the position of its chemical potential by an applied
electric field, which allows the change of the carrier type (elec-
trons or holes) [1,2]. It was experimentally demonstrated that
short graphene samples placed between superconducting contacts
could be used for constructing Josephson junctions [3]. This
indicates that Cooper pairs can coherently propagate in graphene.
The question now arises of whether graphene can be structurally
or chemically modified to become a magnet [4] or even a true
superconductor.

Theoretically, a model with the conical dispersion requires the
minimum intensity of the pairing interaction to develop the
Cooper instability [5]. In view of this fact, a number of attempts
were made to theoretically analyze possible implementation of the
superconducting state in doped graphene. In paper [6], the role of
topological effects in implementation of the Cooper pairing in this
material was investigated. In paper [7], using the mean field
approximation, the plasmon type of superconductivity in gra-
phene was investigated, which leads to the low critical tempera-
tures in the s-wave channel for realistic electron densities. The

possibility of inducing superconductivity in graphene by electron
correlations was studied in [8,9]. In paper [10], the interplay
of the superconducting phase with the dþ id-wave symmetry of
the order parameter and the spin density wave phase depending
on the position of the chemical potential with respect to van
Hove singularity in the electron density of states of graphene was
investigated using the functional renormalization group. Near the
van Hove singularity, the superconducting phases with dþ id- and
f -wave symmetries of the order parameter were found.

In paper [11], the situation was considered when the Fermi
level is located near one of the van Hove singularities in the
density of states of graphene. It is known that these singularities
can enhance the magnetic and superconducting fluctuations [12].
According to the scenario described in [11], the Cooper instability
occurs due to the strong anisotropy of the Fermi contour at van
Hove filling nvH, which, as a matter of fact, originates from the
Kohn–Luttinger mechanism [13] proposed in 1965 suggesting the
appearance of the superconducting pairing in systems with the
purely repulsive interaction. According to the estimation made in
[11], the Cooper instability of this type in idealized graphene can
increase the critical temperatures of the superconducting transi-
tion up to 10 K, depending on whether the chemical potential level
is close to the van Hove singularity. It should be noted that
in the calculation only the Coulomb repulsion of electrons on
one site was taken into account. In paper [14], the possible
interplay and coexistence of the Pomeranchuk instability and the
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Kohn–Luttinger superconducting pairing in graphene were dis-
cussed. The authors of [15] demonstrated using a renormalization
group approach within the Kohn–Luttinger mechanism that in a
monolayer of the doped graphene the superconducting dþ id-
pairing can be implemented.

In this paper, an idealized monolayer of graphene is considered
neglecting the van der Waals potential of the substrate and the
role of the nonmagnetic impurities. The Cooper instability in a
monolayer is investigated in the weak coupling limit of the Born
approximation by implementing the Kohn–Luttinger mechanism
with respect to the Coulomb repulsion of electrons localized not
only on one, but also on the nearest-neighbor carbon atoms. In the
evaluation of the effective interaction in the Cooper channel, we
take into account the polarization contributions caused by the
Coulomb repulsion between electrons belonging to both one and
different branches of the graphene energy spectrum.

The necessity to account for the long-range Coulomb repulsion
in the calculation of the physical characteristics of graphene was
dictated by the results of paper [16], where in the ab initio
calculation of the effective many-body model of graphene and
graphite the values of the partially screened frequency-dependent
Coulomb repulsionwere determined. It was demonstrated that the
value of the onsite repulsion in graphene is U¼9.3 eV and the
Coulomb repulsion of electrons localized on the neighboring
sites is V¼5.5 eV, which indicates the principle importance to
take into account the nonlocal Coulomb interaction. Note that
other researchers consider the values of U and V to be much
smaller.

2. Theoretical model

Since there are two carbon atoms per each unit cell of the
graphene lattice, the latter can be divided in two sublattices A and
B. In the Wannier representation, the Hamiltonian of the Shubin–
Vonsowsky model (the extended Hubbard model) [17] for gra-
phene with respect to electron hoppings between the nearest-
neighbor and next-to-nearest-neighbor atoms and the Coulomb
repulsion of electrons located at one and at neighboring sites has
the form

Ĥ ¼ Ĥ0þĤ int ; ð1Þ

Ĥ0 ¼ �μ∑
f
ðn̂A

f þ n̂B
f Þ�t1 ∑

〈fm〉s
ða†fsbmsþh:c:Þ

�t2 ∑
〈〈fm〉〉s

ða†fsamsþb†f ;sbm;sþh:c:Þ; ð2Þ

Ĥ int ¼U∑
f
ðn̂A

f ↑n̂
A
f ↓þ n̂B

f ↑n̂
B
f ↓ÞþV ∑

〈fm〉

n̂A
f n̂

B
m: ð3Þ

Here a†fsðafsÞ are the operators that create (annihilate) an electron
with the spin projection s¼ 71=2 at site f of the sublattice A,
n̂A
f ¼∑sn̂

A
fs ¼∑sa

†
fsafs are the operators of the numbers of

fermions at site f of the sublattice A (the analogous notations are
used for the sublattice B), μ is the chemical potential of the system,
t1 is the hopping integral between neighboring atoms (hoppings
between different sublattices), t2 is the hopping integral between
the next-to-nearest-neighbor atoms (within one sublattice), U is
the parameter of the Coulomb repulsion of electrons located at
one site and having the opposite spin projections (Hubbard
repulsion), and V is the Coulomb repulsion of electrons located
at neighboring atoms. In the Hamiltonian, 〈〉 denotes the summa-
tion over the nearest neighbors only, 〈〈〉〉 denotes the summation
over the next to nearest neighbors.

After the transition to the momentum state and the Bogoliubov
transformation

αi;k;s ¼wi1ðkÞak;sþwi2ðkÞbk;s; i¼ 1;2; ð4Þ
the Hamiltonian Ĥ0 is diagonalized and acquires the form

Ĥ0 ¼ ∑
2

i ¼ 1
∑
ks
Ei;kα

†
i;k;sαi;k;s: ð5Þ

The two-band energy spectrum of graphene is described by the
expressions [18]

E1;k ¼ t1jukj�t2f k; E2;k ¼ �t1jukj�t2f k; ð6Þ
where the notations

f k ¼ 2 cos ð
ffiffiffi
3

p
kyÞþ4 cos

ffiffiffi
3

p

2
ky

 !
cos

3
2
kx

� �
;

uk ¼∑
δ
eikδ ¼ e� ikx þ2eði=2Þkx cos

ffiffiffi
3

p

2
ky

 !
; uk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3þ f k

q����
���� ð7Þ

were used. The Bogoliubov transformation parameters have the
form:

w1;1ðkÞ ¼wn

22ðkÞ ¼
1ffiffiffi
2

p rnk ; rk ¼
uk

jukj
;

w12ðkÞ ¼ �w21ðkÞ ¼ � 1ffiffiffi
2

p : ð8Þ

In the Bogoliubov representation of quasiparticles, the interac-
tion operator (3) is determined by the expression containing α1;k;s
and α2;k;s as

Ĥ int ¼
1
N

∑
i;j;l;m

k;p;q;s;s

Γ J
ij;lmðkpjqsÞα†

iksα
†
jpsαlqsαmssΔðkþp�q�sÞ

þ 1
N
∑
i;j;l;m
k;p;q;s

Γ?
ij;lmðkpjqsÞα†

ik↑α
†
jp↓αlq↓αms↑Δðkþp�q�sÞ; ð9Þ

where the initial amplitudes

Γ J
ij;lmðkpjqsÞ ¼ Vij;lmðkpjqsÞ ¼ Vuq�pwi1ðkÞwj2ðpÞwn

l2ðqÞwn

m1ðsÞ; ð10Þ

describe the intensity of the interaction of Fermi quasiparticles
with the parallel spins and the initial amplitudes

Γ?
ij;lmðkpjqsÞ ¼ Vij;lmðkpjqsÞþVji;mlðpkjsqÞþUij;lmðkpjqsÞ;

Uij;lmðkpjqsÞ ¼Uðwi1ðkÞwj1ðpÞwn

l1ðqÞwn

m1ðsÞ
þwi2ðkÞwj2ðpÞwn

l2ðqÞwn

m2ðsÞÞ; ð11Þ
describe the interaction of Fermi quasiparticles with antiparallel
spins. Indices i; j; l;m can take the values of 1 or 2. Note that as far
as the terms α†

iksα
†
jpsαlqsαmss and α†

jpsα
†
iksαmssαlqs correspond to

the same process, the effective interaction Γ J should be written as

Γ J
ij;lmðkpjqsÞ ¼ Vij;lmðkpjqsÞþð1�δijδlmÞVji;mlðpkjsqÞ: ð12Þ

3. Effective interaction in the Cooper channel and the
equation for the order parameter

The utilization of the weak coupling Born approximation in the
evaluation of the scattering amplitude in the Cooper channel
allows us to limit the consideration up to the second order
diagrams in the effective interaction for two electrons with the
opposite values of the momentum and spin and use the quantity
~Γ ðp; kÞ. This quantity is graphically determined as a sum of the
diagrams shown in Fig. 1. Solid lines with the light (dark) arrows
correspond to Green's function of the electrons with spin projec-
tions equal to þ1

2 ð�1
2 Þ. It is well-known that the possibility of the

Cooper pairing is determined by the characteristics of the energy
spectrum close to the Fermi level and the effective interaction of
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