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a b s t r a c t

We address the possibility of spiral ferrimagnetic phases in the mean-field phase diagram of the two-
dimensional (2D) Hubbard model. For intermediate values of the interaction U (6≲U=t≲11) and doping n,
a spiral ferrimagnetic phase is the most stable phase in the (n,U) phase diagram. Higher values of U lead
to a non-spiral ferrimagnetic phase. If phase separation is allowed and the chemical potential μ replaces
the doping n as the independent variable, the ðμ;UÞ phase diagram displays, in a considerable region, a
spiral (for 6≲U=t≲11) and non-spiral (for higher values of U) ferrimagnetic phase with fixed particle
density, n¼0.5, reflecting the opening of an energy gap in the mean-field quasi-particle bands

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The 2D Hubbard model remains the most important open theo-
retical problem in the field of the strongly correlated electronic
systems, despite all efforts fuelled by the advent of the high-Tc
superconductivity [1,2]. At half-filling, the spin dynamics of the 2D
Hubbard model is described by the Heisenberg antiferromagnetic
exchange term [3]. Away from half-filling, the movement of
holes through the spin background generates additional spin mixing.
The competition between the Heisenberg exchange and the spin
configuration mixing generated by hole hopping in the 2D Hubbard
model is still far from understood [4–6]. In particular, there is no
consensus regarding the ground state magnetic phase diagram of the
2D Hubbard model and different authors obtain different mean-field
(MF) phase diagrams depending on the magnetic phases allowed [7].
Traditionally, one considered ferromagnetism, antiferromagnetism
and paramagnetism phases [8–12]. The complexity of the MF phase
diagram was increased with the introduction of spiral phases [13],
which appear between the “usual” magnetic phases in the diagram.
This complexity was further increased by the consideration of spatial
phase separation [14–16].

In this paper, we extend the results mentioned above, by
introducing the possibility of a spiral ferrimagnetic phase, that is,
a ferrimagnetic phase such that the orientation of magnetic
moments changes along the lattice (see Fig. 1). More precisely,
we study the 2D Hubbard model using the Hartree–Fock approx-
imation in a square lattice decomposing the lattice into four
square sublattices (A, B, C and D as in Fig. 1) and allowing diffe-
rent amplitudes for magnetizations of the spiral phases in the

sublattices. Note that, even under the MF approximation, when
four sublattices are considered, it is not possible to obtain the
analytical form of the spectra of the 2D Hubbard model. Our MF
approach to the 2D Hubbard model follows that of Dzierzawa [17]
and Singh et al. [18].

2. Calculations

Introducing a different creation operator in each sublattice, A†, B†,
C† and D†, the tight-binding term of the Hubbard Hamiltonian, is

Ht ¼∑
x;y
A†
x;yBx;yþA†

x;yCx;y

þB†
x;yDx;yþC†

x;yDx;y

þA†
x;yBx;y�1þA†

x;yCx�1;y

þB†
x;yDx�1;yþC†

x;yDx;y�1þH:c:; ð1Þ

where we set the hopping constant equal to 1.
We consider for now only sublattice A (we add the other

sublattice terms later on). The interaction term of the Hubbard
Hamiltonian is, as usual, HU ¼U∑rA

†
r↑Ar↑A

†
r↓Ar↓. We assume that

the magnetic moments align in the x–y plane, so that 〈Sz〉¼ 0 and
the Hartree term becomes U=4∑〈n〉2, where 〈n〉 is the density of
electrons on each sublattice (here assumed to be the same on all
of them).

The Fock term includes averages like 〈A†
↑A↓〉¼ 〈Sþ

A 〉¼ 〈SAxþ iSAy〉,
whose values depend on the magnetic phase. Let us assume that
the average spin in sublattice A is

〈 S
!

r!A

〉¼mA

2
½ cos ð q!� r!AÞ; sin ð q!� r!AÞ;0�: ð2Þ
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The vector q!¼ ðqx; qyÞ defines the magnetic phase of the system.

In k
!�space we have

〈Sþ

A k
!〉¼ 1ffiffiffi

L
p ∑

k
!0

〈A†

k
!0

;↑

A
k
!0

� k
!

;↓

〉¼mA
ffiffiffiffiffiffiffiffi
Lu:c:

p

2
δ
k
!

;� q!
; ð3Þ

where Lu:c: is the number of unit cells, which gives

〈A†

k
!

;↑

A
k
!

þ q!;↓
〉¼mA

2
; ð4Þ

while all the other mean values in the summation of Eq. (3) vanish.
The Fock term in the Fourier space is
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Adding the tight-binding, Hartree and Fock terms, the Hamiltonian
HMF reads, in the fA

k
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plus the diagonal term

ULu:c:
4

ðm2
Aþm2

Bþm2
Cþm2

DÞþ
UL〈n〉2

2
: ð7Þ

Here, Htð k
!Þ is the tight-binding term (Eq. (1)) of the Hamiltonian

in k
!�space,

0 1þeiky 1þeikx 0
1þe� iky 0 0 1þeikx

1þe� ikx 0 0 1þeiky

0 1þe� ikx 1þe� iky 0

0
BBBB@

1
CCCCA
; ð8Þ

Hm is the diagonal matrix, Hm ¼ diagðΔA;ΔB;ΔC ;ΔDÞ with

ΔA ¼ �UmA

2
; ΔB ¼ �UmB

2
eiqy ;

ΔC ¼ �UmC

2
eiqx ; ΔD ¼ �UmD

2
eiqx þ iqy : ð9Þ

3. Results and discussion

By setting mA ¼mB ¼mC ¼mD ¼m, we recover the MF mag-
netic phase diagram of the usual 2D Hubbard model, consistent
with the ones obtained by several authors [17,13,15] for zero
temperature, as presented in Fig. 2a. In order to obtain such a

diagram, one minimizes either the MF energy EMF using the
electronic density n as an independent variable, or the thermo-
dynamic potential ΩMF using the chemical potential μ, with
respect to the site magnetization amplitude m and the order
parameter q!¼ ðqx; qyÞ. These parameters define the magnetic
phase of the system.

A solution with m¼0 is paramagnetic and is usually q!�
degenerate, while solutions for ma0 are in general unique. In
the latter case, the wave vector q! specifies the type of magnetic
ordering. For instance, q!¼ ð0;0Þ for the ferromagnetic phase,
q!¼ ðπ;πÞ for the antiferromagnetic phase and all other choices
for spiral phases. In the example shown in Fig. 1, we have
qx ¼ π=18 and qy ¼ π=6. Additionally, in the same example, the
magnetization amplitudes (denoted by the size of the arrows) are
mA ¼mD ¼m1 and mB ¼mC ¼m2om1. Comparing, for each pair
(n,U) or ðU;μÞ, the data obtained for m (Fig. 2d), qx (Fig. 2e) and qy
(Fig. 2f), the MF magnetic phase diagram displayed in Fig. 2a
ensues. For some values of μ, there is more than one pair ð q!;mÞ
which minimizes the thermodynamic potential. In those cases, a
first-order phase transition in the order parameters occurs. When
using n as a basic variable (and posteriorly calculating μ¼ ∂E=∂n�
ΔE=Δn using the data in Fig. 2g), n seems to be multiply defined
for some values of μ, which implies instability (e.g. of the spiral
phase for U¼15). The use of μ as a basic variable solves this
ambiguity and leads to plateaus in the chemical potential μðn;UÞ in
the regions where phase separation (PS) occurs (see Fig. 2h). In
each PS region of the diagram, two spatially separated phases
occur: the ones immediately to the left and to the right of the PS
region in question (see Fig. 2a). The two phases have different
electronic densities, such that the electronic density of the whole
system amounts to n. In Fig. 2c, we show the same phase diagram
as in Fig. 2a, but using μ as the independent variable. The colors of
corresponding regions are the same for easier reading. The thick
solid line indicates a discontinuity in n.

In this work, the magnetic phase diagram for the Hubbard 2D
model comprising four sublattices is obtained by finding the
magnetization amplitudes ðmA;mB;mC ;mDÞ and the vector q!
which minimize the energy. We consider two situations: (i)
mA ¼mD ¼m1 and mB ¼mC ¼m2 and (ii) mA ¼mC ¼m1 and
mB ¼mD ¼m2.

The ground state magnetization amplitude of the usual 2D
Hubbard model is proportional to n for each value of U in the
ferromagnetic phase (see Fig. 2d). When a spiral ferrimagnetic
phase is allowed, it was found that, near zero filling (n¼0) and
half-filling (n¼1), the ground state magnetization remains the
same as in the usual 2D case (see Fig. 3c and d). This means that in
these regions, the ground state magnetization is still constant
throughout the whole lattice. However, as one moves to inter-
mediate n, one finds that m1 and m2 become distinct, as shown in
Fig. 3c and d for cases (i) and (ii) respectively, wherem1 andm2 are
displayed as a function of n and U. These figures show two sheets
reflecting the separation of the magnetization amplitudes. The
colors green for case (i) and red for (ii) are used on all plots of
Fig. 3. For intermediate filling, the system is able to lower its
energy by adopting different magnetization amplitudes on sub-
lattices 1 and 2 in both cases (i) and (ii). This is shown in Fig. 3e for
U¼19 and U¼9. Depending on the region of the phase diagram
one analyses, configuration (i) or (ii) may have the lowest energy,
as shown in Fig. 3a. In this figure, we added another layer on top of
the usual 2D MF magnetic phase diagram, showing which of the
two-sublattice configurations considered has the lowest energy in
the ferrimagnetic region: green for case (i) and red for case (ii).
Furthermore, the energy was minimized with respect to qx and qy,
while using the new magnetization values, but it was found that
only very small changes in q! occur, i.e., despite the changes in
magnetization amplitudes, the magnetic phases in the diagram

B D

CA

Fig. 1. (Color online) The 2D lattice and its four sublattices A, B, C and D. We
consider two situations: (i) mA ¼mD ¼m1 and mB ¼mC ¼m2; (ii) mA ¼mC ¼m1

and mB ¼mD ¼m2.
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