
Effect of off-center positively charged Coulomb impurity
on Dirac states in graphene magnetic dot

C.M. Lee a,b,n, K.S. Chan a,b

a Department of Physics and Materials Science and Center for Functional Photonics, City University of Hong Kong, Tat Chee Avenue,
Kowloon, Hong Kong, People's Republic of China
b City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China

a r t i c l e i n f o

Article history:
Received 22 October 2013
Received in revised form
23 December 2013
Accepted 9 January 2014
by C. Lacroix
Available online 28 January 2014

Keywords:
A. Magnetic dot
A. Monolayer graphene

a b s t r a c t

Using numerical diagonalization, we study the effect of the position of an off-center positively charged
Coulomb impurity in a graphene magnetic dot, whose magnetic field profile is chosen as a Gaussian type.
Numerical results show that the electron–hole symmetry is broken by the Coulomb potential and the
originally zero energy states become nondegenerate and split into hole-like states. For the higher Landau
levels shown, owing to the competition between the repulsive Coulomb potential and the magnetic
confinement, the level orderings are reversed in the hole states at critical magnetic fields. Similar results
are also obtained in the dot-size dependence of the low-lying spectra.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the isolation of monolayer and few-layer graphene sheets
by Novoselov et al. [1,2], extraordinary quantum properties [3],
including room-temperature ballistic transports [4], unusual minimum
conductivities [2] and anomalous quantum Hall effect [2,5,6], were
subsequently reported. Of all these properties, quantum Hall effect is
a useful tool for exploring the electronic structures. For graphene, the
unusual sequence of the quantum Hall plateaus was observed and can
be explained in terms of the Dirac-like chiral quasiparticles with a
Berry phase π for the monolayer [7,8], and 2π for the bilayer [9]. This
material is now emerging as a promising candidate for high density
memory devices or spintronic devices, owing to its exceptionally high
carrier mobility and long spin relaxation time.

Magnetic confinement of electron, or magnetic dots, in gra-
phene is an interesting problem, since the electrons in the
material, owing to the Klein effect [10], cannot be confined by
pure electric field. Some possible schemes have been proposed to
confine electrons by magnetic barriers. In experiments, an effec-
tive way to fabricate magnetic dots in graphene is by creating an
inhomogenous magnetic field [11] using the existing technology.
Deposition of appropriate ferromagnetic layers beneath the gra-
phene layer substrate, placing thin superconducting materials on
top of the samples and strain induced pseudo-magnetic fields

are some of the examples. In theoretical studies, for monolayer
graphene, Martino et al. have given earlier an interesting proposal
to confine electrons by inhomogeneous magnetic fields [12–14].
Later on various inhomogeneous magnetic field configurations
have been attempted to confine electrons or create electron bound
states, including Gaussian fields [15], exponentially decaying fields
[16], non-zero fields in a circular dot [17], fields corresponding to
various potentials [18], and circular step fields [19]. In all these
studies, discontinuous and/or inhomogeneous magnetic fields
were considered to find out the field dependence of the low-
lying spectra and the energy dependence of the transmission
probability through the magnetic barriers, and the electron states,
including bound, quasi-bound and scattering states. They all
conclude that electrons can be confined by the magnetic barriers
in monolayer graphene.

Doping of extrinsic impurities into these systems plays a key
role in the study of this new material since it can modify the
energy levels, and thus largely affects its electronic structure
and optical properties. The Landau level (LL) laser is one of the
potential applications in impurity-doped graphene-based quan-
tum devices [20]. However, studies of those above-mentioned
magnetic field configurations with impurities involved [21–23] in
more realistic experimental situations are rare. In the present
study, we are interested in the Dirac–Weyl (DW) model in the
presence of an off-center positively charged Coulomb impurity and
our focus is on the effect of its position on the low-lying spectra
including both electron and hole states in a magnetic dot. The field
profile is chosen as a Gaussian type. By employing numerical
diagonalization, the low-lying spectra including positive energy,
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negative energy, and zero-energy states, and also the binding
energies are calculated. Finally, we compare and analyze the
qualitative difference of our numerical results between the elec-
tron and the hole states.

2. Theory

The massless DW Hamiltonian in graphene in the K and K0

valley in the presence of a magnetic field describing a single electron
bound to an off-center positively charged Coulomb impurity reads
[21,22]

Ĥ ¼ vFr � ðPþeAÞ�VcoulðdÞI; ð1Þ

where vF is the electron's Fermi velocity, with the value of about
106 m s-1. r¼ ðsx;syÞ and I are the 2�2 Pauli matrices in isospin
space, and the identity matrix, respectively. P and A are the
momentum operator and the vector potential in 2D space, respec-
tively. The last term, for both diagonal matrix elements of the DW
Hamiltonian, denotes the Coulomb potential between the electron
and the off-center impurity:

VcoulðdÞ ¼
e2

4πε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þd2

p ; ð2Þ

which depends on the separation d between the impurity and the
plane of the magnetic dot. When d¼0, the impurity is located at
the center of the dot lying on the xy-plane. The minus sign in
Eq. (1) indicates the Coulomb interaction between the electron and
the impurity is attractive, and we suppose that this potential for
the diagonalized term does not mix K and K0. Note that, in
the presence of the Zeeman interaction that couples the single
electron spin and the magnetic field, the whole low-lying spectra
will be split and shifted by finite amounts without loss of main
qualitative physical features and the Zeeman term can therefore be
neglected in the present calculation. In the present case, we choose
the Gaussian function as the profile of the magnetic field, which is
perpendicular to the dot lying in the xy-plane, as

B¼
0 for 0rrorc;

B0½1�expð�ðr�rcÞ2=r20Þ�êz for rZrc;

(
ð3Þ

where êz is the unit vector in the z-direction. In such a profile, the
field value is zero over the dot with a radius rc and increases
exponentially from zero at r¼ rc up to the maximum B0 at
sufficiently large r, with the overall dot size described by the
effective dot radius rcþr0. The field value will be changed abruptly
from zero to the maximum B0 if r0 approaches zero. Using the
relationship between the closed line integral (the path is denoted by
l) of the vector potential A and the area (denoted by S) integral of
the magnetic field B, i.e., the magnetic flux

ΦðrÞ ¼ ∮A � dl¼
Z

B � dS: ð4Þ

We can then get the following expression for the corresponding vector
potential A, with circular symmetry, and in polar coordinate as

A¼

0 for 0rrorc;
B0

2
ðr2�r2c Þ

r

�

�B0r20
2r

1�exp �ðr�rcÞ2
r20

 !" #

�B0rcr0
ffiffiffiffi
π

p

2r
erf

r�rc
r0

� ��
êθ for rZrc;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ

where êθ is the unit vector in the azimuthal direction and erf(x) is an
error function. In experiments, the inhomogeneous magnetic fields in
such a system can be created by placing a superconducting material of
circular shape on top of the graphene to repel an external magnetic
field, and the field at the boundary may be smoothed as a Gaussian
profile due to the edge effect.

Before numerical diagonalization, the DW Hamiltonian is first
simplified and separated into two parts:

Ĥ ¼ Ĥ0þ V̂ ; ð6Þ

where the unperturbed term Ĥ0 and the residual potential term
are given by

Ĥ0 ¼ vF
0 π̂ �

0

π̂ þ
0 0

 !
ð7Þ

with

π̂ 7
0 ¼ 7 j expð7 jθÞ 8ℏ

∂
∂r

þ lℏ
r
þerB0

2

� �
; ð8Þ

and

V̂ ¼ V̂ coul V̂ þ
V̂ � V̂ coul

 !
; ð9Þ

respectively. The two-component spinor, as bases for numerical
diagonalization, with each component corresponding to the sub-
lattice of graphene, is written as

Ψ T
nl ¼ ðϕN�1;l�1 jϕN;lÞ; ð10Þ

where the symbol j in Eqs. (8) and (10) is the imaginary unit. ϕN;l
can be chosen as the well-known 2D harmonic product basis
states [15], with nonnegative integer LL index N½ � nþðlþjljÞ=2�. n
and lℏ are the radial quantum number and the orbital angular
momentum, respectively. The phase factor expð7 jθÞ for both
off-diagonal matrix elements in Ĥ0 and also in V̂ , as given later,
can be canceled out after integration, since the angular momenta
of the two spinor components are differed by one unit. The two
operators in Ĥ0 are regarded as raising and lowering operators.
Therefore, the corresponding eigenvalue for the Ĥ0 is obtained
by EN;l ¼ 7N1=2 in the energy unit of ℏωð �

ffiffiffi
2

p
vFℏ=aÞ with the

magnetic length að �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB0

p
Þ. The 7sign represents the elec-

tron–hole symmetry. Although the quantum states of the two
spinor components are different, see Eq. (10), for easy comparison,
we use the same notations for the quantum states of those
electron–hole pairs in the present article without affecting our
analysis, according to their LL indices, N. Here we use the following
typical parameters for realistic experiment to illustrate one point
for the Hamiltonian (Eq. (1)). B0 is set to be 1.00 mT, and a will be
800 nm which is greater than the lattice spacing. The transforma-
tion P-PþeA is therefore valid in this continuum model.

In Eq. (9), the matrix elements of the residual potential are
rewritten in dimensionless unit, after simplification, as

V̂ coul ¼
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þd2
p ; ð11Þ

V̂ 7 ¼ 8 j expð8 jθÞ � �FðrÞ
2
ffiffiffi
2

p
r
; ð12Þ

where

FðrÞ ¼

r2 for 0rrorc;

r2c þr20 1�exp �ðr�rcÞ2
r20

 !" #

þrcr0
ffiffiffiffi
π

p
erf r� rc

r0

	 

for rZrc;

8>>>>><
>>>>>:

ð13Þ
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