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a b s t r a c t

The properties of material strongly depend on the microstructure, and the development of micro-
structure is closely related to the phase transition with the temperature-dependent spatial correlation.
To consider more realistic microstructures, we have proposed an efficient and simple algorithm for
generating the spatially-correlated random field, which is obtained by the weighted average of random
fields without spatial correlation according to the spatially-correlated length and anisotropy parameter.
By using a mesoscale finite element model with the microstructures generated by our algorithm, an
application study on the effective elastic behavior of Al2O3–NiAl composite materials is given. Our
numerical results are in agreement with the experimental measurements. The proposed method is
general and robust, which can be extended to the multi-phase materials.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It has been a challenge to determine the microstructure of a
solid, since the final microstructure depends sensitively on the
cooling rate and the depth of quench, which is dictated by
dynamics and not by energetics alone [1–3]. However, the feature
of material, such as dielectric response [2] and magnetic proper-
ties [3], strongly depends on its microstructure. For elastically
inhomogeneous alloys, the phase diagram of temperature and
composition was numerically obtained, in which the effect of
elastic inhomogeneity on the phase transition behavior was also
discussed [4]. Recently, dense Al2O3–NiAl composites containing
0–100% NiAl were prepared by sintering, with no chemical reac-
tions and negligible mutual solubility between the two materials
[5,6]. The elastic and shear moduli obtained experimentally fall
within the Voigt–Reuss bounds and close to the lower bound of
the Hashin–Shtrikman (H–S) model, while Poisson0s ratio of the
composites shows strong dependence on their microstructure
characteristics.

In general, the elastic properties of two-phase materials can be
obtained through solving the relevant governing equations by
various numeric algorithms, such as the traditional finite-
difference scheme [7] or the popular finite-element technique

[8,9]. Employing the lattice Boltzmann method [10], the elastic
properties of multiphase composites of complex geometries can be
determined by numerically solving the stress–strain relationships
in heterogeneous materials, where the random microstructures of
the multiphase composites were reproduced by the random
generation-growth method [11]. Considering the microstructures
of materials, the spatial correlation should be taken into account.
For example, the fiber networks exhibited long-range power-law
spatial correlations of the density and elastic properties, which can
be modeled by the stochastic finite element method [12,13].
In concrete and rock material, different tests of varied ingredients
or mixture ratios presented different failure patterns and a large
scatter in the softening branch of load–displacement response,
which may be due to a great variety of the internal correlation
length for these artificial materials [14].

The spatial correlation can be easily calculated when the
microstructures are determined. However, the microstructures
are not unique for a given spatial correlation and the generation
of spatially correlated random field is a typically inverse problem.
Till now, several iterative methods have been proposed to generate
spatially correlated random field, reflecting the realistic micro-
structures of the multi-phase materials. Besides the Fast Fourier
Transform Method by Yaglom [15] and the Turning Bands Method
by Matheron [16], Fenton and Vanmarcke [17] presented the Local
Average Subdivision Method for the generation of spatially-
correlated random field, which was ideally suited to finite element
models. In addition, Fang et al. [18] used a multilevel grid strategy,
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which combined the matrix decomposition method and the
screening sequential simulation method. However, all these meth-
ods require too much complicated operations for practical app-
lications.

Compared to iterative methods, spatially correlated random
field can be generated through stochastic optimizing algorithms
[19–21], such as the simulated annealing and genetic algorithm.
For given spatial correlations, Yeong and Torquato [19] defined the
objective function from a squares error between the candidate
ones and the objective one, obtaining the required microstructure
by searching the least error via the simulated annealing. Similarly,
Matouš et al. [20] constructed a fitness function according to the
one- and two-point probability functions and minimized the
fitness function, using genetic algorithms combined with simu-
lated annealing. In addition, a stochastic Wang tiling-based tech-
nique could be applied to reconstruct the microstructures with
given spatial statistics, which utilized a finite set of tiles assembled
and accurately reproduced long-range orientation orders with
high efficiency [21].

In this paper, we propose a simple and practical algorithm to
generate the spatially correlated random field, describing the
microstructures with the spatial correlated length and the aniso-
tropy parameter. Starting from a series of random number without
spatial correlation, we generate new series with the linear com-
position of origin series, according to the spatial correlation length
and the coefficients which are determined by the calculations of
spatially-correlated functions. By using mesoscale finite element
models with more realistic microstructures generated by our
algorithm, the effective elastic behavior of two-phase material is
taken as an application study. Our numerical results of Al2O3–NiAl
are in agreement with the experimental measurements. The
proposed method is general and robust, which can be extended
and applied in the multi-phase materials.

2. Methods

The main idea of our algorithm is to generate spatially-
correlated random fields from those without spatial correlation,
by the weighted average according to the spatially-correlated
length and anisotropy parameter. As is known, Ising model has
been considered as the typical model to demonstrate the phase
evolution, in which the spatial correlation is temperature-
dependent following the exponential decay. For simplicity, our
method focused on the microstructures with the exponential
decaying correlation function. We would investigate the cases
with other types of spatial correlations in future work.

For the two-phase material, we firstly consider a one-
dimensional random series without spatial correlation ai ¼ 71,
i¼1, 2, …, n, where 1 and �1 indicate the two components. Thus,
we have

aiaiþd
� �¼ 1

n
∑
n

i ¼ 1
aiaiþd ¼

1; d¼ 0
0; da0

(
ð1Þ

where d is the distance between aiþd and ai. With the linear
composition of ai and certain parameters ci, we construct a new
series bi (i¼1, 2, …, n):

bi ¼ c0aiþ ∑
n

k ¼ 1
ckakr

dðkÞ ð2Þ

where d(k) is the effective distance between ai and ak, and
r¼ expð�ð1=LÞÞ, in which L denotes the spatial correlation length.
Applying the periodical boundary condition, we have aiþn ¼ai.
Note that using a linear transformation of the vector of indepen-
dent random variables is a general technique to produce random

variables with a specified covariance matrix, such as the Cholesky
decomposition [22].

For the isotropic material, d(k) is the absolute value of (k� i) in
the one dimensional case. The correlation of bi can be calculated as:

bibiþk
� �¼ 1

n
∑
n

i ¼ 1
bibiþk ¼

c20þOðrÞ; k¼ 0

∑
k

j ¼ 0
ðcjck� jÞrkþOðrkþ1Þ; ka0

8>><
>>: ð3Þ

where OðrÞ and Oðrkþ1Þ are the ignored terms of higher order than r
and rkþ1, respectively. Thus, we should have c20 ¼ 1 and
∑k

j ¼ 0ðcjck� jÞ ¼ 1, which confirm

bibi
� �

: bibiþ1
� �

: bibiþ2
� �

… bibiþk
� �

…¼ 1 : r : r2 : … : rk: ð4Þ

We set c0 to be 1 and thus c1 should be 0.5, since c0c1þc1c0 ¼ 1.
With c0 ¼ 1 and c1 ¼ 0:5, we can obtain c2 from c0c2þc1c1þ
c2c0 ¼ 1. Similarly, the ci of larger indices can be obtained. As
shown in the inset of Fig. 1(a), the parameters ci decrease as the
index i increases. Note that we use the truncation to simplify the
calculation of ci, which would also induce the discrepancies
compared to analytical functions. However, the strict deduction of
ci is much more complicated.

In the construction of spatial-correlated random field, there are
two factors to be determined: the parameter ci and the effective
distance of d. Similar to one dimensional case, we construct the
new series bi;j for two dimensional cases to maintain the spatial
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Fig. 1. (Color online) The spatial correlation functions and microstructures obtained by
the algorithm for two-dimensional case with various spatial correlation lengths (L) and
composition (x): (a) x¼0.5, L¼0.1, 3, and 6; (b) L¼0.3, x¼0.1–0.9. The results of
analytical calculations are plot in solid lines for comparison, with typical microstruc-
tures shown in the inset. The parameters ci and cd(p,q) are shown in the inset of (a).
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