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Abstract

This work focuses on feedback control of particulate processes in the presence of sensor data losses. Two typical particulate process examples,
a continuous crystallizer and a batch protein crystallizer, modeled by population balance models (PBMs), are considered. In the case of the
continuous crystallizer, a Lyapunov-based nonlinear output feedback controller is first designed on the basis of an approximate moment model
and is shown to stabilize an open-loop unstable steady-state of the PBM in the presence of input constraints. Then, the problem of modeling
sensor data losses is investigated and the robustness of the nonlinear controller with respect to data losses is extensively investigated through
simulations. In the case of the batch crystallizer, a predictive controller is first designed to obtain a desired crystal size distribution at the end
of the batch while satisfying state and input constraints. Subsequently, we point out how the constraints in the predictive controller can be
modified as a means of achieving constraint satisfaction in the closed-loop system in the presence of sensor data losses.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Particulate processes play a key role in a broad range of
process industries ranging from chemical, materials and min-
erals to agricultural, food and pharmaceutical. These areas of
manufacturing have a current value exceeding, according to
some estimates, two trillion dollars and a growth factor of 5 to
10 over the next decade. Examples include the crystallization of
proteins for pharmaceutical applications, the emulsion polymer-
ization for the production of latex, the fluidized bed production
of solar-grade silicon particles through thermal decomposition
of silane gas and the aerosol synthesis of titania powder used
in the production of white pigments. Particulate processes are
widely recognized as presenting a number of processing chal-
lenges which are not encountered in gas or liquid processes.
One of these challenges is to operate the particulate process
in a way that it consistently makes products with a desired
particle size distribution (PSD). For example, in crystallization
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processes, the shape of the crystal size distribution is an impor-
tant quality index which strongly affects crystal function and
downstream processing such as filtration, centrifugation and
milling (Rawlings et al., 1993).

Population balances have provided a natural framework for
the mathematical modeling of PSDs (see, for example, the
tutorial article (Hulburt and Katz, 1964) and the review article
(Ramkrishna, 1985)), and have been successfully used to de-
scribe PSDs in many particulate processes. Population balance
modeling of particulate processes typically leads to systems
of nonlinear partial integro-differential equations that describe
the rate of change of the PSD. The population balance models
(PBMs) are also coupled with the material, momentum and en-
ergy balances that describe the rate of change of the state vari-
ables of the continuous phase, leading to complete particulate
process models. In the context of PBM-based control of partic-
ulate processes, the main difficulty in synthesizing practically
implementable nonlinear feedback controllers is the distributed
parameter nature of the PBMs which does not allow their direct
use for the synthesis of low-order (and therefore, practically
implementable) nonlinear output feedback controllers. To over-
come this problem, we took advantage of the property that the
dominant dynamic behavior of many particulate process models
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is low-dimensional and proposed (Chiu and Christofides, 1999)
a model reduction procedure, based on a combination of the
method of weighted residuals and the concept of approximate
inertial manifold, which leads to the construction of low-order
ordinary differential equation (ODE) systems that accurately re-
produce the dominant dynamics of broad classes of particulate
process models. These ODE systems were subsequently used
for the synthesis of nonlinear (Chiu and Christofides, 1999;
Kalani and Christofides, 1999; Christofides, 2002), robust (Chiu
and Christofides, 2000; El-Farra et al., 2001), and predictive
(Shi et al., 2005, 2006) controllers that enforce desired sta-
bility, performance, robustness and constraint handling proper-
ties in the closed-loop system. Owing to the low-dimensional
structure of the controllers, the computation of the control ac-
tion involves the solution of a small set of ODEs, and thus, the
developed controllers can be readily implemented in real-time
with reasonable computing power. In addition to these results,
an online optimal control methodology including various per-
formance objectives was developed for a seeded batch cooling
crystallizer in Xie et al. (2001) and Zhang and Rohani (2003).
The reader may refer to Daoutidis and Henson (2002), Doyle
et al. (2002), Braatz and Hasebe (2002) and Christofides et al.
(2007) for reviews of results on simulation and control of par-
ticulate processes.

Despite this progress on the design of advanced feedback
control systems for particulate processes, the problem of
investigating controller stability, performance and robustness
in the presence of sensor data losses has received no attention.
Sensor data losses may arise due to a host of reasons including
measurement sample loss, intermittent failures associated with
measurement techniques, as well as those induced via data
packet losses over transmission lines. Previous work on con-
trol subject to actuator/sensor faults has exclusively focused
on lumped parameter systems. Specifically, in El-Farra et al.
(2005), communication losses were modeled as delays in im-
plementing the control action and in Mhaskar et al. (2006)
the problem of unavailability of some of the states for mea-
surement was considered and reconfiguration-based strategies
were devised to achieve fault-tolerance subject to faults in the
control actuators. Furthermore, in Mhaskar et al. (2007), a the-
oretical framework was developed for the modeling, analysis
and reconfiguration-based fault-tolerant control of nonlinear
processes subject to asynchronous sensor data losses (inter-
mittent unavailability of measurements). Specifically, for each
control configuration, the stability region (i.e., the set of initial
conditions starting from where closed-loop stabilization un-
der continuous availability of measurements is guaranteed) as
well as the maximum allowable data loss rate which preserves
closed-loop stability was computed and this characterization
was utilized in taking preventive action, i.e., to trigger re-
configuration, as well as in making the decision as to which
backup configuration should be employed in the closed-loop
system to maintain stability. The method was applied to a
lumped polyethylene reactor model.

This work focuses on the problem of feedback control of
particulate processes in the presence of sensor data losses. Two
typical particulate process examples, a continuous crystallizer

and a batch protein crystallizer, are considered and are modeled
by PBMs. In the case of the continuous crystallizer, a Lyapunov-
based nonlinear output feedback controller is first designed
on the basis of an approximate moment model and is shown
to stabilize an open-loop unstable steady-state of the PBM in
the presence of input constraints. Then, the robustness of the
nonlinear controller with respect to data losses is extensively
investigated through simulations. In the case of the batch crys-
tallizer, a predictive controller is first designed to obtain a crys-
tal size distribution at the end of the batch that has desired shape
while satisfying state and input constraints. Subsequently, we
point out how the constraints in the predictive controller can
be modified as a means of achieving constraint satisfaction in
the closed-loop system in the presence of sensor data losses.
Extensive simulations are presented to demonstrate the effect
of sensor data losses on closed-loop stability and performance
in both examples.

2. Handling sensor malfunctions: continuous crystallizer

In the present section, we consider a standard model of a
continuous crystallizer and address the problem of stabilization
of its open-loop unstable steady-state using both state feedback
and output feedback control in the presence of sensor data
losses. We begin with the presentation of the crystallizer model,
continue with the controller design and modeling of sensor
data losses and conclude with extensive simulation results and
discussion.

2.1. PBM of a continuous crystallizer

We consider a continuous crystallizer which is fed by a
stream of solute at concentration c0. Under the assumptions
of isothermal operation, constant volume, mixed suspension,
nucleation of crystals of infinitesimal size and mixed product
removal, a dynamic model for a continuous crystallizer can be
derived from a population balance for the particle phase and a
mass balance for the solute concentration of the following form
(Lei et al., 1971; Jerauld et al., 1983):
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where n(r, t̄) is the density of crystals of radius r ∈ [0, ∞) at
time t̄ in the suspension, � is the residence time, c is the solute
concentration in the crystallizer, c0 is the solute concentration
in the feed and �̄=1−∫ ∞

0 n(r, t̄) 4
3�r3 dr is the volume of liquid

per unit volume of suspension. R(t̄) is the growth rate, �(r −0)

is the standard Dirac function, and Q(t̄) is the nucleation rate.
The term �(r − 0)Q(t̄) accounts for the production of crystals
of infinitesimal (zero) size via nucleation. R(t̄) and Q(t̄) are
assumed to follow McCabe’s law and Volmer’s nucleation law,
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