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Abstract

We consider the granulation of two components, a “solute” (the component of interest) and an excipient. We specifically focus on cases such
that the aggregation kernel is independent of the composition of the aggregating granules. In this case, theory predicts that the distribution of
components is a Gaussian function such that the mean concentration of solute in granules of a given size is equal to the overall mass fraction
of solute in the system, and the variance is inversely proportional to the granule size. To study these effects, we perform numerical simulations
of the bicomponent population balance equation using a constant aggregation kernel as well as a kernel based on the kinetic theory of granular
flow (KTGF). If the solute and excipient are initially present in the same size (monodisperse initial conditions), both kernels produce identical
distributions of components. With different initial conditions, the KTGF kernel leads to better mixing of components, manifested in the form
of narrower compositional distributions. These behaviors are in agreement with the predictions of the theory of aggregative mixing. We further
demonstrate that the overall mixedness of the system is controlled by the initial degree of segregation in the feed and show that the size

distribution in the feed can be optimized to produce the narrowest possible distribution of components during granulation.
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1. Introduction

Wet granulation is a size enlargement process in which a
multicomponent mixture that contains an active compound, an
excipient, and a binder, is led to produce an agglomerated pow-
der until desired properties are met with respect to mechani-
cal strength of granules, flow characteristics and composition.
Granulation is performed by spraying the liquid binder onto a
solid powder in a fluidized bed or other mixing device (tum-
bling drums, high-shear mixers). Agglomeration is initiated by
the wetting action of the binder, which acts as the bonding
agent and leads to size enlargement. Depending on the cohe-
sive strength of the coalescing granules, disintegration is also
possible, either via breakage of wet granules, or by fracture of
dried granules in which the binder has solidified. In the past 15
years there has been considerable activity in the development
of simulation tools for granulation (Darelius et al., 2005, 2006;
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Rajniak et al., 2006; Wang et al., 2006; Blandin et al., 2005;
Cameron et al., 2005; Gantt and Gatzke, 2005; Immanuel and
Doyle, 2005; Rajniak and Chern, 2004; Tan et al., 2004; van den
Dries and Vromans, 2003; Heinrich et al., 2002, 2003; Iveson,
2002; Liu and Litster, 2002; Wang and Cameron, 2002;
Adetayo and Ennis, 2000; Pottmann et al., 2000; Talu et al.,
2000; Zhang et al., 2000; Cryer, 1999; Masteau and Thomas,
1999; Annapragada and Neily, 1996; Adetayo et al., 1995) and
this progress has been summarized in some recent review arti-
cles (Cameron et al., 2005; Wang and Cameron, 2002; Iveson
et al., 2001). These approaches use increasingly sophisticated
models to describe the physics of granule interaction which
are then coupled to the population balance equation (PBE) and
solved for the size distribution. Virtually all of these studies
consider granulation of a single component (univariate PBE),
although some work has been done with multivariate systems
in which other granule properties such as porosity or surface
area has been included in the model.

Multicomponent granulation has received less attention in
the literature, in part due to the fundamental questions in one-
component systems that remain unresolved but also due to
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Fig. 1. Schematic of bicomponent aggregation.

the increased complexity of multivariate population balances.
Nonetheless, many practical applications involve the granula-
tion of multicomponent solids. In pharmaceutical granulation,
for example, an active pharmaceutical ingredient (API) is co-
granulated with an inert excipient, in preparation for subse-
quent tablet formation. The purpose of granulation in this case
is not only to increase the size of the granules, but also to im-
prove mixing of components. Thus, in addition to changes in
the size distribution, one needs to know the compositional dis-
tribution of components among granules of different sizes. Ide-
ally, all granules should have the same composition, equal to
the overall ratio of the bulk amounts loaded in the unit. There
are, however, various reasons that lead to inhomogeneous dis-
tribution of components within granules. Imperfect mixing can
arise from the fluid patterns within the agglomerator. This is
more of an issue in high-shear granulation and less so in spray
fluidization, which allows for better circulation and contact be-
tween the phases. Another consideration is the ability of the
binder to effectively coat the granules. Thus, interfacial energy,
local curvature and surface roughness of the granules can affect
the process in critical ways. In granulation of a single solid,
such properties affect the rate of granule growth, and possibly
the size distribution, if the morphology of granules and gran-
ule/binder interactions vary with size. In granulation of two or
more components such interactions have the additional effect
of producing potentially severely inhomogeneous distribution
of components, resulting in poor mixing and even segregation.
While co-granulation and blending of components represents a
widespread industrial unit operation, there are no general prin-
ciples to guide practitioners in need of efficient and optimized
performance. This paper is motivated by the need to provide
such guidance, both in terms of numerical simulation tools but
also in terms of theoretical predictions.

To address this problem we simplify the complexities of gran-
ulation by focusing on granule aggregation alone. Thus we con-
sider two components, the “solute”, representing the component
of interest, and the “excipient”. Granules of variable compo-
sition aggregate via binary events and with rate constant K12,
that is a function of granule properties. This mechanism leads
to enlargement of granules and distributes the components, as
shown schematically in Fig. 1. By focusing on agglomeration
alone, we are able to study the fundamental process by which
components blend. We call this aggregative mixing. Breakage,
although present in experimental granulators, will not be con-
sidered here. In this paper we make no formal distinction be-
tween “aggregation” and “agglomeration”, both of which we
take to mean “binary attachment of granules”. The physics of
the aggregation process are included in the binary kernel, K.

This is generally a complex function of granule properties that
include size, porosity, wettability and degree of pore saturation
by binder; of binder properties, e.g., viscosity; and process vari-
ables such as fluid patterns and energy input. The development
of appropriate kernels, either empirical or based on first prin-
ciples, is an area of ongoing research (Liu and Litster, 2002;
Cryer, 1999; Adetayo et al., 1995; Sastry, 1975; Hounslow
et al., 2001; Kapur and Fuerstenau, 1969). Here we take the
approach that the kernel depends on the size (mass) of the gran-
ules, and their composition (i.e., amount of solute). With this
physical picture in mind, the questions we want to answer are:

What is the compositional distribution as a function of time
and granule size?

How should blending be quantified?

How long does it take to reach a certain level of blending?
Is it possible to improve blending of components in any way?

We base our study on a combination of theory and simulation.
Our theoretical analysis is based on our recent formulation of
bicomponent aggregation (Matsoukas et al., 2006). Here we
focus on the practical aspects of this theory with respect to
granulation, while leaving all derivations to the original source.
We supplement theory with numerical solutions of the bivariate
PBE to obtain further insights on the blending process.

2. Theory of aggregative mixing

In this section we present the mathematical formulation of
the problem and outline the main conclusions of the theory
whose details can be found in Matsoukas et al. (2006). The dis-
tribution in a bicomponent population of granules is described
by the bivariate function F (v, m) such that F (v, m)dvdm is
the number of granules with mass (excipient + solute) in the
range v to v+ dv, and mass of solute in the range m to m +dm.
For m > v it is understood that F (v, m) =0. It is convenient to
define two auxiliary distributions. First, we introduce the size
distribution, f(v), that gives the distribution of granule sizes
(mass) irrespective of granule composition. It is obtained from
the bivariate distribution by integrating out the dependence on
solute:

f(v):/v F(v, m)dm. (D
0

Second, we introduce the compositional distribution, g(m|v),
which gives the probability that a granule of size v contains
solute in the amount m. This is obtained by normalizing the
bivariate distribution by the number of granules with size v:

F(v,m)
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It follows from these definitions that the three distributions are

related in a simple manner:

F(v,m) = f(v)g(m|v). 3

That is, the bivariate distribution is the product of the (uncon-
ditional) size distribution times the (conditional) compositional
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