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a b s t r a c t

We investigate the spin transport properties of magnetic graphene superlattice in the presence of Rashba
spin–orbit interaction (RSOI). We consider two types of magnetic profiles: a sequence of N square
magnetic barriers and a sequence of delta magnetic barriers. In the first case it is found that the angular
range of the spin transmission through magnetic graphene superlattice can be efficiently controlled by
the number of barriers and this renders the structure's efficient wavevector-dependent spin filters. As the
number of magnetic barriers increases, the angular range of the spin transmission decreases, the gaps in
transmission and conductivity versus energy become wider. In the second case, when the magnetic field
is present, the spin polarization increase with increasing the magnetic field. In both cases, the
magnetoresistance ratio shows a strong dependence on the number of magnetic barriers.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene, a two-dimensional material with a monolayer hon-
eycomb lattice of carbon atoms, has been fabricated experimen-
tally by Novoselov et al. [1]. In graphene, the energy dispersion
relation is approximately linear in the proximity of the Dirac
points (often referred to as K and K′) where the electron and hole
bands touch. Such a peculiar band structure results in many
interesting phenomena, including the observer of half-integer
quantum hall effect [2], special Andreev reflection [3], Klein
tunneling [4] and many others. To circumvent the Klein tunneling
effect, it has been suggested that a magnetic barrier can effectively
block Klein tunneling and achieve confinement for such massless
Dirac fermions for graphene [5]. The required magnetic structures
in graphene can be realized by depositing ferromagnetic stripes on
the graphene layer [6,7]. In past few years, transport properties
through magnetic graphene barriers [5,8–10] and magnetic gra-
phene superlattice [11–15] have been investigated and many
interesting results have been achieved, e.g. wavevector filtering
and an angular confinement of the transmission. In all these works
the spin degree of freedom has been completely neglected. This
is justified because of the smallness of Zeeman splitting in
graphene [16]. On the other hand, the study of spin transport is
one of the most active fields in graphene research. The generation
of a spin-polarized current is a fundamental prerequisite for the
construction of spintronic devices [17]. Meanwhile, Dedkov et al.

have shown experimentally that, if graphene is grown directly
onto the Ni (111) substrate the Rashba spin–orbit interaction
(RSOI) strength λR can reach values up to 200 meV at room
temperature [18]. However, Rader et al. later argued that the
splitting observed by Dedkov et al. was not related to RSOI [19]. In
an experimental study, Varykhalov et al. have reported that the
interaction of Au atoms between the graphene and Ni substrate
can enhance the Rashba spin splitting to a large value of the order
of 13 meV [20]. Recently, Gierz et al. have also observed a large
RSOI strength up to 200 meV in a graphene monolayer at the
sample temperature of 100 K where the graphene epitaxially
grows on the substrate of SiC [21]. In graphene the RSOI originates
from the interaction of carbon atoms with the substrate electric
field or presence of a perpendicular external electric field (gener-
ated by a gate) [22,23]. The purpose of this paper is to study the
spin-transport properties through magnetic graphene superlattice
in the presence of the RSOI by using the transfer matrix method.
The effect of the number of barriers on the spin transmission
probability and spin conductivity is taken into account. We show
that the angular range of spin transmission through magnetic
graphene superlattice can be efficiently tuned by controlling
incident energy, RSOI strength or by increasing the number of
barriers. Our probe shows that when a magnetic field is present,
the spin polarization can be observed, whereas for the RSOI alone
it is zero. In addition, the dependence of the magnetoresistance
ratio to the number of barriers, Fermi energy, and RSOI strength is
investigated.

The paper is organized as follows. Theory and method are
presented in Section 2, the results are discussed in Section 3, and a
brief summary and conclusion are given in Section 4.
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2. Model and theory

In this paper, we consider two kinds of systems. In both cases, a
monolayer graphene covered by a thin insulating layer and parallel
ferromagnetic (FM) stripes are deposited on the top of the
dielectric layer [6,7]. Further, a gate voltage is applied to the FM
stripes in order to produce a controllable Rashba coupling [24,25].
In the first case FM stripes have magnetization perpendicular to
the graphene in the x–y plane. In the second case FM stripes with
magnetization parallel (P) or antiparallel (AP) to the growth
direction (the x axis) are deposited on top of the dielectric layer.
Thus, the systems under consideration are magnetic graphene
superlattice consisting of N barriers, where the barrier region with
the RSOI is separated by a normal graphene (NG) in which RSOI is
absent. The magnetic field BðxÞ emerging from the FM stripes will
influence locally the motion of Dirac electrons in the graphene x–y
plane and is assumed to be homogeneous in the y direction, but
varies along the x direction. The schematic of the structures is
shown in Fig. 1.

According to the above discussion, we shall consider two types
of magnetic field profiles. In the first case, illustrated in Fig. 1
(b) and (c), the profile consists of a sequence of N magnetic
barriers of equal height B and width b, separated by well regions
(nonmagnetic regions) of width w. In the second case, illustrated
in Fig. 1(e) and (f), each magnetic barrier can be approximated by
several delta functions. Here, the effects of electron–electron and
electron–phonon interactions are neglected by considering a
single electron transmission at zero temperature. Therefore, the
charge carriers in our model are described by the following
Hamiltonian:

H ¼H0þHRSO; ð1Þ

in which,

H0 ¼ ℏvFsð p!þe A
!Þ; HRSO ¼ λR

2
ðs� sÞz; ð2Þ

where p! is the quasiparticle momentum, s is the 2D Pauli matrix,

vF � 106 ms�1 is the Fermi velocity, A
!¼[0,AyðxÞ, 0] is the vector

potential with ∂xAðxÞ ¼ BðxÞ in the Laudau gauge. The vector
s¼ ðsx; syÞ acts in spin space. It is necessary to mention that the
term HRSO contains the RSOI in magnetic graphene superlattice
with the strength of λR. For simplicity, we express all the quantities
in the dimensionless form by rescaling: the magnetic field
BðxÞ-B0BðxÞ; the vector potential AðxÞ-B0lBAðxÞwith the magnetic
length lB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB0

p
; the wavevector k-k=lB; the electron energy

E-EℏvF=lB; RSOI strength λR-λRℏvF=lB; the barrier of width b-blB
and well of with w-wlB. For a realistic value B0 � 0:1 T [26,27] we
find lB ¼ 80 nm and ℏvF=lB � 7 meV, which set the typical length
and energy scales. To solve Eq. (1), we suppose that an incident
electron from the left will go towards the interface with incident
angle ϕ and spin s. The general solution to the Hamiltonian H can
be expressed in the following form [20,28].

Ψ ¼ aψ þ
Nsþbψ �

Nsþcψ þ
Ns′þdψ �

Ns′;

Ψ ¼ a′ψ þ
s þb′ψ �

s þc′ψ þ
s′ þd′ψ �

s′ :

(
ð3Þ

where sðs′Þ ¼ þ1ð�1Þ corresponds to the expectation value of the
spin projection. a, b, c, d and a′, b′, c′, d′ represent the ampliudes of
quasiparticles in the well and barrier regions, respectively. Also
ψ7
Ns and ψ7

s are the wave functions traveling along the 7x in the
well and barrier region respectively, and can be expressed by the
following form:

ψ7
N↑ð↓Þ ¼ ð1ð0Þ; 7e7 iϕð0Þ;0ð1Þ;0ð7e7 iϕÞÞeið7kxxþkyyÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ϕ

p
;

ψ7
s′ðsÞ ¼ ðð7ks′ðsÞ � ikyÞ; E; � is′ðsÞE; � is′ðsÞð7ks′ðsÞ þ ikyÞÞ

�eið7ks′ðsÞxþkyyÞDs′ðsÞ;

Ds′ðsÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðjks′ðsÞj2þk2yþE2Þ

q
: ð4Þ

where E is the energy of incident electron, ks′ðsÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEÞðE�s′ðsÞλRÞ�k2y

q
and kx ¼ E cos ϕ are the wave vectors along

the x direction in the barrier and well regions respectively, while
ky ¼ E sin ϕþAðxÞ is the wave vectors along the y axis. By appling
the continuity of wave functions at the boundaries for a system
consisting of N barriers and using the transfer-matrix method, we
obtain the ts′s and rs′s, where ts′s is the transmission coefficient for

Fig. 1. (Color online) Schematic illustration of the monolayer graphene covered by a thin insulating layer; parallel FM stripes are deposited on top of the insulating layer. The
gate voltage Vg applied on the FM stripes controls the Rashba coupling. (a) FM stripes have magnetization parallel (P) or antiparallel (AP) to the z axis. (d) Each FM stripe has
a magnetization P or AP to the x axis. (b) Magnetic field profile B(x) and corresponding vector potential A(x) when FM stripes have magnetization parallel to the z axis. (e) B(x)
and A(x) when FM stripes have magnetization parallel to the x axis. (c) The same as in (b) but in the AP alignment. (f) The same as in (e) but in the AP alignment.
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